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I Introduction :
Let A denote the class of functions of the form
f@) = z+ Xi,a,z" (1.1)
which are analytic in the unit disc E = {z:|z| < 1|}. Let § be the class of functions of the form (1.1), which are
analytic univalent in E.
In 1916, Bieber Bach ([7], [8]) proved that |a,| < 2 for the functions f(z) &S. In 1923, Lowner [5]
proved that |az| < 3 for the functions f(z) &S..

With the known estimates |a,| < 2 and |a;| < 3, it was natural to seek some relation between a; and a,?
for the class S, Fekete and Szeg6[9] used Lowner’s method to prove the following well known result for the
class 8.

Let f(z) &8, then

3 — 40,if B < 0;
las —Ba3| < | 1+ 2exp(),if 0 <B< 15 (12)
40— 3,ifA > 1.

The inequality (1.2) plays a very important role in determining estimates of higher coefficients for some
sub classes § (See Chhichra[1], Babalola[6]).
Let us define some subclasses of §.

We denote by S*, the class of univalent starlike functions

g@)=z+ Z b,z" € A and satisfying the condition

Re (Zg((z))) >0z€E  (13)

We denote by X, the class of univalent convex functions

h(z) = z+ Z ¢, 2",z € A and satisfying the condition
=2

Re ((jlh((?) > 0,7 € E(L4)

p-VALENT FUNCTION:

Multivalent functions and in particular p-valent functions, are a generalization of univalent functions.In
the study of univalent functions, one of the fundamental problems is whether there exists a univalent mapping
from a given domain E onto a given domain D. A necessary condition for the existence of such a mapping is

that E and D have equal degrees of connectivity. If E and D are simply-connected domains whose boundaries
contain more than one point, then this condition is also sufficient and the problem reduces to mapping a given
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domain onto a disc. In this connection, a special role is played in the theory of univalent functions on simply-

connected domains by the S, class of functions f that are regular and univalent on the unit disc E = {z:|z| <

1}, normalized by the conditions £(0) = 0, f (0) = 1, and having the expansion
f@)=z+az°+a3z23+———,z€E

In the case of multiply-connected domains, mappings of a given multiply-connected domain onto so-called

canonical domains are studied.In particular, p-valent functions can be defined as follow:

Let A, (p is a positive integer)denote the class of functions of the form

f2)=2"+ Z e 2P

which are analytic in the unit disc E. Clearly, A; = cfl A function f(z) € A,is said to be p-valent in E if it
assumes no value more than p times in E.

p-VALENT STARLIKE FUNCTION:
A functionf (z) € A,is said to be a p-valent starlike function in E if there exists a positive real number p such

that ,
zf (2)
Re( @) ) >0
and

(L (2N
Of [Re <—f(z) )] do = 2pm,z =re"” for

p<|z| <1
We denote the class of p-valent starlike functions by S;. By S;(8), we denote the class of functions f(z) €
Apsatisfying the condition

of @D\ _
Re(f(z) )>,8,0Sﬁ<p,ZEE

Note: p-valent starlike functions are also called p-valently starlike functions.
f(2) € S;(B) is called p-valently starlike function of order .

X
We introduce a new subclassas{f(z) EA -[Z{Z @) ] 1+Az

Y oar @]~ 16z VA [E} and we will denote this class as f(z) €

H,.
Symbol < stands for subordination, which we define as follows:

Principle of Subordination: Let f(z) and F(z) be two functions analytic in E. Then f(z) is called subordinate
to F(z) in E if there exists a function w(z) analytic in [E satisfying the conditions w(0) = 0 and |w(z)| < 1 such
that f(z) = F(w(2)); ze E and we write f(z) < F(2).

By U, we denote the class of analytic bounded functions of the form w(z) = Y7 ;d,z",w(0) =
0,|lw(z)| < 1.(1.5)
Itis known that |[d;| < 1,|d,| < 1 — |d;|?. (1.6)

1. PRELIMINARY LEMMAS:

For0 < ¢ < 1, wewrite w(z) = (f:z) so that
W@ =1 4 202+ 2(cp + D)z + — — —(2.1)

1-w(z)
Herelc;| < 1,lc;| < 1- ¢y |? (2.2)

. MAIN RESULTS
THEOREM 3.1: Let f(2) € H; , then
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(A-Bp’[(A-Bp—-B] (A-B)*p°
2(p +2)2 SNCESVE
A-B)p—-(B+ D]+ D*
if < [( )p —( )(p +1) 3.1)
2(p +2)*(A- B)p?
(A-B)p’
2(p +2)?
2
a —ua <A
S flA-Bp-B+DIp+ D" [-B+U@-Bplo+ D' .
20+ XA -Bp? T 2+ 2iMA-B)p? '
(A-B)*’p® (A-B)p*[(4-B)p—B]
(r+1)* 2(p +2)?
1-B+(A—B + 1)*
if s [ ( pl(p + 1) 33)
2(p +2)*(A-B)p?
The results are sharp.
Proof: By definition of f(z) € #,;, we have
[{zf (Z)}I] _ 144z,
W = T35, w(z) € U.(3.4)
Expanding the series (3.4), we get
pPzP +a, (0 +1)32° + a, (0 +2)°2P + ——— =(1+¢(A—B)z+ (A—B)(c; — Bef)z* +
— =)@’ +pay(p + 1)°2° + pay i +2)°2Pt + - - ) (35)
Identifying terms in (3.5), we get
_ c1(A-B)p3
ap+1 - (p+1)2 (3 6)
_ c1?(4=B)*p*+(A—B)(ca—Bc)p?,
ap+2 - 2(p+2)2 3 7)
From (3.6) and (3.7), we obtain
2(4-B)*p*+(4-B)(c2—Bc})p® 2(4-B)%p®
Q1o ey = 2 pz(p+2)2 (c2=Bef)p® g Lo r’(3.8)
Taking absolute value, (3.8) can be rewritten as
9 lc2|(A-B)p? (A-B)*p*-B(A-B)p> (4-B)%p
|ap+2 nuap+1| — 2(p+2)2 2(P+2)2 » +1)4 | | 1| (3 9)
Using (2.2) in (3.9), we get
2 (1=lc11)@A-B)p? (A-B)’p*-B(A-B)p3 (4-B)*p® 2
|y 2 = | < S50 T | la*(3.20)
: [(A-Bp—Bl(p+1)*
Case Lu <= o ra—pyps
(3.10) can be rewritten as
a2 (1-le11>)(A-B)p® (4-B)’p*-B(A-B)p3 _  (4-B)*p°® 2
a2 = paZ 1] < EEOES (s o) el
2 (4-B)p? (A-B)*p*—(B+1)(A-B)p® (4-B)*p® 2
(psz = pafal < o0l + (LR o) lerl?(3.12)
: [((4-B)p-(B+D](p+D)*
Subcase I (a): u < 2122 (AB)p?
Using (2.2), (3.11) becomes
2 (A-B)p3[(4—B)p—B] (4-B)%*p®
|ap+2 - :uap+1| = 2(p+2)? - (+1)* (312)
: [((4-B)p—(B+D](p+1)* ;
Subcase I (b): u = D2 AB)p? . We obtain from (3.11)
(4-Byp3
|42 = M1 < 505(3.13)
. [(A-B)p-Bl(p+1)*
Case ll::u > 2122 (A—B)p?
Preceding as in case I, we get
(A-B)p? (A-B)p*+(1-B)A-B)p®  (A-B)*p°
— g2 < — — 2 3.14
|ap+2 :uap+1| = 2(p ¥+ 2)2 z(p + 2)2 [ (p + 1)4 |C1| ( )

[1-B+(4A-B)p](+D)*
2(p+2)2(A-B)p3

Subcase Il (a): u =
(3.14) takes the form

A-Bp* [((A-B)*p*+(1-B)A-Bp? (A—B)*p®
|ap+2 — naZ 41| < |aps2 —paii,| <

20 +2)?7 2(p + 2)2 BN FEID
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(A-B)’p® (A-B)p*[(A—B)p—B]
@+ 1Dt 2(p +2)?

|y 2 = 18 41| < (3.15)

1-B+(A-B)p](p+1)*

. [
u =<
Subcase 11 (b): 4 22—

Preceding as in subcase | (b), we get

(A-B)p’
aps2 — pag | < 20+ 27
Combining (3.12),(3.13), (3.15) and (3.16), the theorem is proved.
Extremal function for (3.1) and (3.3) is defined by
fi(z) = (1 + az)*where

(3.16)

A-Bp*(p+2*-@+D*((A-Bp-B)
@+ D@ +2)?

(A-B)p*(p +2)*

h=
A-B)p*(p+2)*—(+D*((A-B)p-B)
Extremal function for (3.2) is defined by

p3z (4-B)
=z(1+ ———
fa(2) Z< + 2(p+2)2)
Corollary 3.2: Putting A = 1, B = —1 in the theorem, we get

And

(p3(2p+1)_ 4up® < (p+1)*
| w+2?  e+0 T +2y
3 +1)* +1)8
|a+2_ua2 S{ 4 if (p+1) <p< +1)
P P+l (p+2)* ~ 2p*(p+2)* 2p3(p +2)?
4up®  p'(2p+1) s (P+1)°
@+D'  @+2? TFEpipr2)?
Corollary 3.3: Putting p = 1 in the theorem, we get
(A-B)(A-2B) (A-B)" 8(A—2B—1)
18 B TR ATy
A—B) 8A-2B-1 8(A—2B+1
et <4 S i ST < p s NG
|u(A—B)2_(A—B)(A—ZB)iH>8(A—2B+1)
16 18 = 9(4-B)
Corollary 3.4: Putting A = 1,B = —1,p = 1 in the theorem, we get
1 , 8
3 3l #=5
|a—a2|<l'f§< <E
3THEI=gY g SHk=sTg
1 . 16
L)

These estimates were derived by Keogh and Merkes [8] and are results for the class of univalent convex
functions.
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