SPECIAL r-TM CONNECTION

Prakash Chandra Srivastava

Department of Mathematics, S.D.J.P.G. College, Chandeshwar, Azamgarh – 2760001, India

ABSTRACT -

In this paper we will discuss Typical four connection $r - C\Gamma$, $r - H\Gamma$, $r - R\Gamma$, $r - B\Gamma$ are special r-TM (r-M(0)) Connection.

Keywords: Berworld's Connection, Cartan's Connection and Rund's Connection.

Date of Submission: 21-12-2021	Date of acceptance: 04-01-2022

INTRODUCTION :-I.

The theories of connections on Finsler Space have been studied by many authors from their own Stand point. A well known connection are Berworld's Connection, Cartan's Connection and Rund's Connection. In all these connections the deflexion tensor and torsion tensor vanishes H. Yalsuda [4], [5], [6], has considered connection on Finsler Space with given deflexion and torsion tensor field. Prasad et at [1], [2] [3] have introduced a Finsler Connection with respect to which metric tensor is h-recurrent or v-recurrent. In this paper the connections will be discuss for which following condition are satisfied.

- (i) The connection is h and v-recurrent.
- (ii) Their deflexion tensors do not vanish.
- (iii) The torsion tensor field do not vanish
- They are closely similar to the connection introduced in [1] (iv)

MATSUMOTO'S CONNECTION :-П.

Let M be n dimensional Finsler Space with fundamental function L (x,y). We shall consider one of the most general connection on M. This connection may represented by

(2.1) $\Gamma = (\Gamma_{ik}^i, \Gamma_k^i, \tilde{C}_{ik}^i)$ where $\Gamma_{ik}^i, \Gamma_k^i, \tilde{C}_{ik}^i$ are positively homogenous of degree 0, 1 - 1 in y^i respectively and are called h- connection, non linear connection and v-connection of Γ respectively. The *hv* torsion tensor. (2.2) $\tilde{P}_{kj}^i = \Gamma_{k}^i|_j - \Gamma_{jk}^i$ where symbol || denote partial differentiation by y^j . We put $Q_{jk}^i = -P_{kj}^i$ then h-

connection is expressible in.

(2.3) $\Gamma_{jk}^{i} = \Gamma_{k}^{i}|_{i} + Q_{jk}^{i}$ where Q_{jk}^{i} is (o)-P homogeneous tensor. If we denote non linear connection of Cartan's (or Barwald's) by G_k^i than non linear connection Γ_k^i of Γ is expressible as -

(2.4) $\Gamma_k^i = G_k^i + T_k^i$ for T_k^i is (1) p homogeneous tensor.

Now applying (2.4) after Partial differentiation with respect to y^{j} on (2.3) we get,

(2.5) $\Gamma_{jk}^{i} = G_{jk}^{i} + T_{jk}^{i} + Q_{jk}^{i}$ where $T_{jk}^{i} = T_{k}^{i}|_{i}$

let Three tensors T_k^i , Q_{jk}^i , \tilde{C}_{jk}^i are given as follows :-

(2.6)(a) T_k^i is (1) – P homogenous (1, 1) tensor.

(b) Q_{ik}^{i} is (0) P homogenous (1, 2) tensor.

(c) \tilde{C}_{jk}^i is a (-1) P homogenous (1, 2) tensor.

Then a connection Γ on M is uniquely determined by (2.1), (2.4), (2.5) First we shall give important axiom concerning connection M Γ in Finsler geometry.

 $F_1 - M\Gamma$ is L recurrent w.r.t. recurrence vector K_K i.e.

(2.7) $L_{|_{k}} = K_{K}L$ F_{2} – The defluxion tensor

 $(2.8) D_k^i = y^j \Gamma_{ik}^i - \Gamma_k^i$

 $F_3 - M\Gamma$ is v-recurrent with respect to recurrence vector b_k and v-symmetric i.e., (2.9) $g_{ij|k} = bkg_{ij}$.

 $(2.10) C_{ik}^i = C_{ki}^i.$

 F'_3 – The V-connection of $M\Gamma$ vanishes i.e. $\tilde{C}^i_{jk} = 0$.

 F_4 – With respect to Γ the absolute differentiation Dy_i of y_i ($g_{ij} y^i$) is given by $Dy^j = g_{ij}Dy^j$.

 F_5 – Paths w.r.t. to Γ are always geodesics of M.

 $F_6 - M\Gamma$ is h recurrent with respect to recurrence vector a_k $(2.11) g_{ii|_{k}} = a_{k} g_{ij}$

 $F_7 - \Gamma$ is h symmetric that is h torsion tensor $\overline{\Gamma}_{jk}^{i} (= \Gamma_{jk}^{i} - \Gamma_{kj}^{i})$ vanishes F_8 The hv-torsion tensor P_{kj}^i (= $-Q_{jk}^i$) of Γ vanishes

SPECIAL r-TM CONNECTION :-III.

Typical four connection r-C Γ, r-H Γ, r-R Γ, r-B Γ are special r-TM (r-TM (0)) connection. First we will discuss r-C Γ connection it is given by axiom F_2 , F_3 , F_6 , F_7 from F_3 we get equation.

 $(3.1) \, \bar{C}_{ij}^{k} = C_{ij}^{k} - \frac{1}{2} (b_j \, \delta_i^k + b_k \, \delta_j^i - g_{ij} \, b^k).$

From axiom F_6 we get equation.

$$(3.2) a_k g_{ij} + 2P_{ijk} + \frac{\partial g_{ij}}{\partial y^h} T_k^h + T_{ijk} + T_{jik} + Q_{ijk} + \zeta_{jik} = 0.$$
Applying Christoffel process to (3.2) we get,
$$(3.3) \frac{1}{2} (a_k \delta_j^i + a_j \delta_k^i - a^i g_{jk}) + (C_{kr}^i T_j^r + C_{jr}^i T_k^r + g^{im} C_{jkr} T_m^r)$$

$$+ P_{jk}^{i} + T_{kj}^{i} + Q_{kj}^{i} = 0$$

Now contracting (3.3) by y^k we get

 $(3.4) T_j^i = \frac{1}{2} (a^i y_j - a_j y^i - a_o \delta_j^i - L^2 C_{jr}^i a^r)$ From equation (3.3) and (3.4) we get $(3.5) Q_{kj}^i = -T_{kj}^i - P_{kj}^i - (C_{kr}^i T_j^r + C_{jr}^i T_k^r - g^{im} C_{jkr} T_m^r)$

$$-\frac{1}{2}\left(a_k\delta_j^i+a_j\delta_k^i-a^ig_{jk}\right)$$

So r-C Γ is determined by equation (3.1), (3.4) and (3.5)

Next we will discuss r-R Γ whose characterizing axiom are F_2 , F'_3 , F_6F_7 by F'_3 , we get $(3.6) \tilde{C}^i_{ik} = 0$

by axiom F_6 equation (3.4), (3.5) so r-R Γ connection is determined by equation (3.6), (3.4), (3.5). Now we will discuss r-H Γ whose characterizing axiom are F_2 , F_3 , F_7 , F_8 and F_1 . From axiom F_8 we get.

(3.6) $Q_{jk}^i = 0$ by axiom F_1 , we get

(3.7) $\partial_i F = (\Gamma_i^{o} + K_i L^2)$ where $F = \frac{L^2}{2}$. So non linear connection G_i^i of Berwald is given by $G_i^i = \partial_i G^i$

(3.8) $G^i = \frac{1}{2} g^{ij} [y^r \partial_j \partial_r F - \partial_j F].$

Putting (4.6) in (4.7) and using axiom F_2 , F_8 we get

(3.9)
$$G^{i} = \frac{1}{2} \Gamma_{i}^{o} + \frac{L^{2}}{2} g^{ij} K_{o||j} - L^{2} K^{i} + K_{o} y^{i}$$

Differentiating (3.9) w.r.t. y^i and using axiom F_2 we get

$$\Gamma_{j}^{i} = G_{j}^{i} + (L^{2} K^{i} + K_{o} y^{i})_{||_{j}} - \frac{1}{2} (L^{2} g^{ir} K_{o||_{r}})_{||_{j}}$$

So from (2.4) it follows that

 $(3.10) T_j^i = (L^2 K^i + K_o y^i) ||_j - \frac{1}{2} (L^2 g^{ir} K_o ||_r) ||_j.$

So r-H Γ is determined by eq. (3.1), (3.6), (3.10) Now we consider r-B Γ whose characterizing axioms are F_1 , F_2 , F'_3, F_7, F_8 . From axiom F'_3 and F_8 follows that

 $C_{jk}^i = 0$, $Q_{jk}^i = 0$ and from axiom F_1, F_2, F_8 the tensor T_j^i is given by eq. (3.10) so r-B Γ is determined.

If M is a Riemannian Space then torsion tensor C_{iik} vanishes. In this case fundamental function L (x, y) is given by.

L (x, y) = $(g_{ij}(x) y^i y^j)^{\frac{1}{2}}$ and Riemannian Connection is given by.

RN $\Gamma = \begin{bmatrix} i \\ j \\ k \end{bmatrix}$, $y^j \begin{bmatrix} i \\ j \\ k \end{bmatrix}$, 0] Where $\begin{bmatrix} i \\ j \\ k \end{bmatrix}$ is christoffel symbol fermed with $g_{ij}(x)$. Now we consider ar-RN Γ whose characterizing axioms are F_2 , F'_3 , F_6 , F_7

and

 F_0 : Fundamental tensor g_{ii} is independent of y^i

 $C_{ijk} = 0$ from axioms F'_3 , F_6 we get

$$(3.11)\frac{\partial g_{ij}}{\partial k} - g_{hi} \Gamma^h_{ik} - g_{ih} \Gamma^h_{ik} = a_k g_{ij}$$

Apply Christoffel process to his equation and using axiom F_7 we get

 $(3.12) \Gamma_{ij}^{h} = \left\{ \begin{array}{c} h \\ i \end{array} \right\} - \frac{1}{2} \left(a_i \, \delta_j^{h} + a_j \, \delta_i^{h} - a^{h} \, g_{ij} \right) \text{ From axiom}$ $F_2 \text{ it follows that } \Gamma_k^{i} = \Gamma_{jk}^{i} \, y^i \text{ so r-RN } \Gamma \text{ is using determined.}$

IV. CONCLUSION :-

In this paper we have obtained Typical r-C Γ , r-H Γ , r-R Γ , r-B Γ are special r-TM (r-M (o)) connection r-C Γ is given by (3.1), (3.4), (3.5), r-R Γ connection is given by (3.6), (3.4), (3.5) r-H Γ connection is given by (3.1), (3.6), (310), r-B Γ is given by (3.10) r-RN Γ is given by (3.12), For, (3.11).

REFERENCES

- [1]. Prasad B.N., Shukla H.S. :On conformal transformations of h-recurrent wagner Spaces. Indian J. Pureappl. Math. 18 (1987) 913-21.
- [2]. Prasad B.N., Srivastava Lalji: On hv-recurrent Finsler Connections. Indian J. Pure, appl.math.20 (1989) 790-98.
- [3]. Prasad B.N., Srivastava Lalji: On generalized h-recurrent Finsler Connections. Indian J. Pure, appl.math.21 (1990) 653-60.
- [4]. Yasuda H.: On connections of Finsler Space Ann. Rep. Assahikawa Med. College 4 (1982) 1-11.
- [5]. Yasuda H: On TMA connections of a Finsler Space Tensor N.S. 40 (1983) 151-58.
- [6]. Yasuda H : A Study of connections in Finsler Space. Ann. Rep. Assahikawa Med. College 7 (1986) 1-77.