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Solution of Fractional Order Stokes´ First Equation 
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Abstract: Fractional sine transform and Laplace transform are used for solving the Stokes` first problem with 

ractional derivative, where the fractional derivative is defined in the Caputo sense of order mm  1 . 

The solution of classical problem for Stokes` first problem has been obtained as limiting case. 

Keywords: : Stokes` first problem, Fractional derivatives, Laplace transform, Fourier sine transform,  Caputo 

fractional derivative. 

 

I. Introduction 
Fractional partial differential equations have many applications in applied sciences and engineering. 

These applications appear in gravitation elastic membrane, electrostatics, fluid flow, steady state, heat 

conduction and many other topics in both pure and applied mathematics. Typical examples of fractional of 

fractional partial differential equations of the time fractional advection dispersion equation as in[6,7], fractional 

diffusion equation as in[16,8,5,9,15], fractional wave equation as in[14]. The Rayleigh-stokes fractional 

equations as in[2].    

The Stokes fractional equations are examples of fractional partial differential equation . 

In this paper  we consider Stokes´ first fractional equation for the flat plate. Exact solution of this 

equation will be investigated. The Fourier sine transform and fractional Laplace transform are used for getting 

exact solution for this equation. The fractional terms in Stokes´ equation are considered as Caputo fractional 

derivative. 

Basic Definitions: 

 

Definition1: The Rieman-Liouville fractional integral[10,2] of order α is defined as: 

e

 

Definition 2: The Caputo fractional derivative [10] of order mm  1  is defined as: 
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Definition 3: The Laplace integral transform[11,13,4,10], of the function  xf  is defined as: 
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Definition 4: The Fourier sine integral transform[4,10,1], of the function  xf  is defined as: 
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II. Solution of Stokes` first problem 
 Consider the Stokes´ first problem for a heated flat plate  
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where  txu ,  is the velocity, t is the time, x is the distance and  ,  are constants with respect to x and t and 


tD  is the Caputo fractional derivative with mm  1 . The corresponding initial and boundary 

conditions of  Eq.(1) are  
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Moreover, the natural condition  
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also has to be satisfied. 

Employing the non-dimensional quantities 
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then 
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and 
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Eqs. (1) to (5) reduce to dimensionless equations as follows (for brevity the dimensionless mark “*” is omitted 

here) 

     



  









,1,

,
1

,
2

2

mm
x

txu
D

t

txu
t    (7) 

 
  0,0,

0,





xfornxb

t

xu
nn

n

      (8) 

  0,1,0  ttu         (9) 
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 Making use the Fourier sine integral transform and boundary conditions (9), (10). Then Eqs. (7) and (8) 

leads to  
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Hence the Laplace transform of Eq. (11)is 
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Taking the inverse Laplace transform of  Eq. (15) and using the relation  
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Then Eq. (15) leads to 
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where 
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  is the Mittag-Leffler function in two parameters [10].  

Now considering the inverse Fourier sine integral transform of Eq. (17). We get  
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which is the exact solution of (7). 

2.Spicial Cases: 

Now we consider the following two cases: 

Case 1: when 10   : 

 Then equations (7),(8),(9) and (10) leads to  
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Making use the Fourier sine integral transform and boundary conditions (21), (22). Then Eqs. (19), (20) leads to 
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Hence the Laplace transform of Eq. (19)is 
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Taking the inverse Laplace transform of  Eq. (21) , then Eq. (21) leads to 
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Now considering the inverse Fourier sine integral transform of Eq. (22). We get  
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which is the special case of equation (18). 

Now we will take special cases of case 1: 

1. When   00 b , then Eq. (23) yields 
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which is the result obtained by Fag and others [2]. 

2. When   ,1,00  b  then Eq. (23) becomes 
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which is the result obtained by Fetacau and Corina [3].  

Case2: when 21   : 

 Then equations (7),(8),(9) and (10) leads to 
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Making use the Fourier sine integral transform and boundary conditions (29), (30). Then Eqs. (26), 

(27),(28) leads to 
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 The fractional Laplace transform of Eq. (31) subject to the initial conditions (32), (33) is 
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 Now taking the Laplace inverse integral transform and inverse Fourier sine integral transform 

respectively to both sides of Eq. (34), we get the exact solution of Eq. (26) as  
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Now we will take special cases of case 2: 

1. When 2 , then Eq. (35) leads to  
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2. When     0,0,2 10   bb , then Eq. (35) becomes  

 
      






dtEt

k

x
txu k

k

k

k

k

k


















 










 22,1

12

1

00

11

!

1sin2
,    (41) 

which is the result obtained by Salim and El-Kahlout [12]. 

 

III. Conclusion 
This paper has presented some results about Stokes` first problem. Exact solution of this equation is 

obtained by using the Fourier sine integral transform and integral Laplace transform. The Caputo fractional 

derivative  is considered in Stokes` first problem as time derivative, where the order of  the fractional derivative 

is considered as mm  1 . Special cases have  

 

been considered in the cases 2,1   . 
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