
International Journal of Research in Engineering and Science (IJRES)

ISSN (Online): 2320-9364, ISSN (Print): 2320-9356

www.ijres.org Volume 1 Issue 8 ǁ Dec 2013 ǁ PP.20-27

www.ijres.org 20 | Page

Research on Stability of Software Structure Based On Design

Patterns

Zheng Liu
1
, Qian Zhang

2
, Hai Zhao

1

1
(College of Information Science and Engineering, Northeastern University, China)
2
(Technology Strategy & Development Department, Neusoft Corporation, China)

ABSTRACT: In view of metric for stability of software structure, a metric method based on design pattern is

presented, which makes use of the influence of design patterns in OO software network as typical microstructure.

Firstly, the application of design patterns is studied in software network, and then the stability of microstructure

extracted from design patterns is analyzed by Lyapunov method. The concept of Coverage of Design Patterns is

presented according to the application of design pattern in software system, and is used to metric for the

stability of the whole software structure.

Keywords - stability of software structure, design patterns, software network, OO software

I. Introduction

From the point of view of software design, internal structure of software will bring great influence on

the system reliability. Generally, the more complex the software structure is, the worse the structure stability is,

and more structural defects are implied in the system which can affect the system reliability. As to structural

stability, Elish believes that it is a sign of the ability that maintain their original structural characteristics during

the evolution, the greater the stability is, the stronger the ability maintaining original characteristics when some

arguments such as scale or structure change
[1]

. Recently, researchers find that the software network presents

typical characteristics of complex network if many reusable elements such as class, object, module, and

subroutine are regarded as the nodes and the relationship between these elements are regarded as arcs in network
[2-8]

.

Any complex system is composed of many basic tectonic units according to certain rules, and the

stability of these basic tectonic units can affect the stability of the whole system directly. Software design

patterns describe common problems appearing during development of OO software and effective solution for

these problems. Application of design patterns in software design can improve the openness, compatibility,

stability and scalability of software system and make development and maintaining more easily. After

researching on a large number of OO software, it is found that design patterns can be found anywhere in each

software system, which are used repeatedly in order to resolve some common problems, and they compose a

complete system. From the structure of design patterns, each pattern is a microstructure has certain function

composed of several classes or interfaces and their mutual relationship. If extracting from these microstructures,

corresponding connected subgraphs will be got. Analyzing on these small connected subgraphs can help to

understand the global formation mechanism of network structure because they are basic elements to compose

the whole network. These small connected subgraph are usually used to study the structure design and evolution

of network in the area of complex network. Now this method is used to research the variation of software

structure based on design patterns in the area of software engineering that provide new perspective on the study

of characteristics of whole software system.

Research on stability of software structure based on design patterns

www.ijres.org 21 | Page

II. Design patterns in software network

2.1 Establish software network

The process of establishing software network is: starting from source code, extracting the structural of

system firstly, then abstracting to network model. As to OO software, class is the basic constituent elements and

class-level software network is that the nodes are abstracted from classes and the arcs are abstracted from

relationship between classes. The specific operation is shown as Fig.1.

class Point{

 int x,y;

}

class CGrid{

 void setCharAt (char ch, Point p);

 void getCharFrom (Point p);

}

abstract class CGObject{

 Point location;

}

class PointGrid extends CGrid{

 CGObject displayList[];

 void addCGObject (CGObject obj);

 void deleteCGObject (int index);

}

class BorderedPrintCGrid extends PrintCGrid{

 void setBorderCharacter (char ch);

 void displayGrid();

}

CGrid

PrintCGrid

BorderedPrintCGrid

Point

CGObject
Extract class

diagram

from source

code

Abstract to

network

Fig.1 Extraction of software network

This network model is described as: N=(V, A, T, W). Among them, V(Vertices)={vi | i = 1, 2, …, n }

represents the set of n nodes in network, and each node represents a class in software system. A(Arcs)={(vi, vj, t)

| vi ∈ V, vj ∈ V, t ∈ T, i≠j } represents the set of arcs in network and each arc represents the relationship

between two classes. There is usually not single relationship between two classes in real software system, for

example, there is dependency and also generalization between class A and class B, so t is a composite value.

T(Type)={t | t ∈ {G, U, D} } represents the relationship between two classes. Here G means generalization, D

means Dependency and U means usage including association and aggregation. W(Weight)={w(a)|w(a)=f(t, δ, N),

a ∈ A, t ∈ T, δ ∈ (0,1), N ∈ {0,1,2……}}represents the weight of each arc.

2.2 extracting the network structure of design pattern

There are 23 design patterns for OO software. In order to study the influence on software structure

brought by design patterns, the structural network of design patterns are extracted according to the definition of

design pattern and its structural description. The specific extracting method is as follows:

(1) describing the design pattern structure by UML according to its definition, and then analyzing the

relationship between classes, interfaces and objects.

(2) Abstracting nodes in software network from classes, interfaces and objects in UML class diagram.

(3) Abstracting arcs in software network from the relationship between two elements in UML class diagram,

and determined the type value of the arc according to the relationship type.

Different from the extraction of the whole software network, the description of type of arc in design

pattern network should be more meticulous. Description the type of arc as generalization, dependency and usage

is not enough, and the types of usage and dependency need be differentiated further. According to research

needs for design pattern, usage type is described as three types: general usage U(g), static usage U(s) and

template usage U(t), and dependency type is described also as three types: parameter dependency D(p), returns

dependency D(r) and friend dependency D(f).

Research on stability of software structure based on design patterns

www.ijres.org 22 | Page

Taking Flyweight pattern as example, its structure is shown as Fig.2, and its network model is shown as Fig.3.

FlyweightFactory
flyweight

+getFlyweight (in key)

Flyweight

+operation (in extrinsicState)

UnsharedConcreteFlyweight

- intrinsicState

+operation (in extrinsicState)

ConcreteFlyweight

- allState

+operation (in extrinsicState)

U(t)

GG

Fig.2 Frame of Flyweight Fig.3 Software network of Flyweight Pattern

2.3 Match design pattern in software network

Among all the 23 design patterns, Singleton pattern, Memento pattern and Template pattern have

simple structure due to there’s only one or two nodes in their structural networks, so the affection on structure

stability is limit. There is only generalization arc in Façade pattern’s structural network, which is confused with

general generalization in software network during matching and reduces the match accuracy. So there are only

19 patterns will be matched in this paper.

The essence of matching design patterns is searching the exact network structure in software network.

If local network structure has the same characteristics with some design pattern, the design pattern is found. In

order to match all the design patterns accurately and quickly, the network structure of each pattern should be

described mathematically firstly, and then search for a feature arc of pattern structure in software network,

compare characteristics of the terminal node and the arc connecting the terminal node and another one in design

pattern network with those in software network one by one until find all the nodes and arcs in pattern network.

According to description of mathematical model of design pattern structure, the nodes are represented

by v, w, and the arc between two nodes is represented by <v, w>. v is initial node and w is terminal node. Taking

the Flyweight pattern as example, the description of its mathematics model is as follows:

There are two class nodes v and w in software network and the type of arc between v and w is U(t), and

there is a node set cw that satisfied the following conditions:

(1) All the nodes in cw are class node.

(2) There is arc between nodes in cw and w whose type is generalization.

(3) The number of nodes in cw is 2.

The structure composed with node v, w, node set cw and arc <v, w>, <cw, w> is called Flyweight

pattern.

According to the mathematics description above, the critical points in matching algorithm are:

(1) The type of arc between v and w is just template usage.

(2) Penetration of w whose type is generalization is 2.

So, matching algorithm for Flyweight pattern is as following:

(1) Select any arc <v, w> in software network;

(2) Determine if v, w are class nodes, if not, turn to (8);

(3) Determine if the type of arc <v, w> is U(t) and it is single type, if not, turn to (8);

(4) Determine if the penetration of w whose type is generalization is 2, and the penetration of v is 0, if

not ,turn to (8);

(5) Save v, w;

(6) Search all the child nodes of w and save;

(7) Update the number of Flyweight pattern;

Research on stability of software structure based on design patterns

www.ijres.org 23 | Page

(8) Determine if have traversed all the arcs in software network, if not ,turn to (1);

(9) End.

III. Analysis on structural stability of design pattern

3.1 Stability of microstructure

Recently, researchers find that the frequency of occurrence of different relationship between nodes is

non-randomness, and the frequency is different in different networks along with the deepening of the research

on complex network theory. Milo et al called the typical interactive structure appears in real network more

frequently than in random network as motif, and believed the motif is the basic unit to compose the whole

network and achieves main function of system. Researching on these basic units are benefit for understanding

the overall characteristics of the whole network and grasping the formation mechanism of macroscopic

characteristics by investigating the way that composing macroscopic topology of software network using motif.

According to the research on design patterns in OO software, the pattern structure is just the motif of software

network by ignoring the specific context in each pattern.

According to perspective of system science, the structural characteristics and dynamic behavior of a

local network topology are determined by connection mode including of the direction or weight of which

between nodes. So, the differential equation representing the corresponding dynamic system of a local network

structure is as follows:

),,2,1(),,,(21 nixxxfx nii  
 (1)

Among them, xi represents the status of node i, and fi represents how much all the other nodes

connecting with node i influence on it
[9]

. Eigenvalue of Jacobian  













i

i

ij
x

f
aJ

 should be calculated in order

to determine the stability of microstructure by Lyapunov method according to literature
[10]

. aij represents how

much node j influence node i , and its value is the weight of directed arc form node i to node j in software

network. Since nodes have no influence on themselves in software network, the value on diagonal of matrix is

less than 0. The value is set -1 except in special circumstances so as to research further.

Prill et al find that the robustness of typical microstructure appears when the network structure changes

slightly highly correlates with frequency of this microstructure’s occurrence in networks in the study on

biological networks. At the same time, structural stability score (SSS) is presented to metric on the stability of

microstructure
[11]

. Generally, the value of SSS is related with the number and size of feedback loops in the

structure. The larger the number and size are, the smaller the value is, which leads to the stability declining.

Complexity and McCabe loop in program have similar relationship in software design. When the number and

scale turn to larger, the program will be more complex
[12]

. So loops should be avoided in order to reduce

complexity and improve stability in software design
[13]

.

3.2 structural stability of design pattern

The structural stability of 19 design patterns are analyzed according to metrics discussed above.

Jacobians of all the 19 design patterns are listed as follows:

Research on stability of software structure based on design patterns

www.ijres.org 24 | Page

Table 1 Jacobians of design patterns composed of three nodes

Pattern Name Jacobians Pattern Name Jacobians

Builder pattern























100

01

01

21

13

w

w
 Chain of

Responsibility pattern






















10

01

001

31

21

w

w

Adapter pattern























100

010

1 1312 ww

Interpreter pattern























10

01

001

31

21

w

w

Composite pattern























10

01

001

31

21

w

w

State pattern























10

01

001

31

21

w

w

Proxy pattern























1

01

001

3231

21

ww

w

Table 2 Jacobians of design patterns composed of four nodes

Pattern name Jacobians Pattern name Jacobians

Factory Method

pattern


























1000

10

001

0001

3432

21

ww

w

Command pattern



























1000

10

0010

001

3432

14

ww

w

Prototype pattern



























1000

100

010

001

34

24

14

w

w

w

Observer pattern



























1000

10

001

001

3432

21

14

ww

w

w

Flyweight pattern



























1000

100

010

001

34

24

14

w

w

w

Table 3 Jacobian matrixes of design patterns composed of five nodes

Pattern name Jacobians Pattern name Jacobians

Bridge pattern

































10000

1000

0100

0001

0001

45

35

21

15

w

w

w

w

Mediator pattern

































1000

1000

0100

01

00001

51

45

35

242321

w

w

w

www

Decorator pattern

































1000

1000

0100

0001

00001

51

45

35

21

w

w

w

w

Strategy pattern

































10000

1000

0100

0010

0001

45

35

25

15

w

w

w

w

Research on stability of software structure based on design patterns

www.ijres.org 25 | Page

Itarator pattern

































100

01000

010

001

00001

5451

3432

2321

ww

ww

ww

Table 4 Jacobian matrixes of design patterns composed of more than five nodes

Pattern name Jacobians

Abstract Factory

pattern



























































1000000

0100000000

010000000

001000000

0000100000

000010000

000001000

0000010

0000001

0000000001

9,106,101,10

89

79

56

46

373431

282521

www

w

w

w

w

www

www

Visitor pattern

















































10000000

1000000

0100000

00010000

0001000

0000100

0000010

000001

78

68

45

35

25

1812

w

w

w

w

w

ww

Eigenvalue of each the Jacobian above is calculated and it is find that all value are -1, that means

structural stability of these design patterns has nothing to do with the connection between nodes in network.

According to the definition of SSS, all SSS values of microstructures described by Jacobians are 1. So, all

design patters have stable structure.

IV. Metrics on stability of software structure

Because the structures of all design patterns are stable, applying design patterns in software system to

realize system’s function can not only improve efficiency of development due to reusability of these patterns but

also help the system structure maintain its structural stability. The more patterns are applied in a OO software,

the higher the structural stability of the system. Definition of coverage of design patterns is presented to metric

the proportion of nodes belong to design patterns in the software network as follows:

Definition 1 Coverage of Design Patterns: the proportion of nodes belongs to some design pattern

among all the nodes in software network is called Coverage of Design Patterns of this software system, which is

marked as C, and

 10,8,5,4,3,

19

1 








i

i

ii

n
N

fn

C . (2)

Among this, N is the number of nodes in software network, fi is the number of some design pattern

applied, and ni is the number of nodes in this pattern.

Research on stability of software structure based on design patterns

www.ijres.org 26 | Page

In this paper, 50 open source software are selected as study sample to analyze Coverage of Design

Patterns of them, and the statistics result is shown as Fig.4. It can be find that among these software, Octave has

the highest value of C that is 0.764, and Subversion has the lowest value of C that is 0.012. The average value of

C is 0.294 and the standard deviation is 0.18.

Fig.4 Stat. of Coverage of design patterns

The relationship between C and the scale of software is described in Fig.5. The abscissa is the number

of nodes in software network that shown in logarithmic form. It is find that software whose C value is larger

always have fewer nodes, that means microstructure of design patterns have greater influence on the whole

network in the software network with fewer nodes. For example, the number of nodes in a software network

whose C value is larger than 0.5 is always within 500. Leading role that design patterns play on the structure is

declining along with the software’s scale increasing, and the value of C will keep on a stable level. According to

statistical data, it can be believed that if the value of C is larger than 0.4, design patterns have great influence on

the software structure and the structure of this software is stable due to the stable structure of design pattern. If

the value of C is less than 0.2, the stability of software structure should be metric by other means due to design

patterns have little influence on the software system.

Number of nodes

C
o
v
er

ag
e

D
eg

re
e

o
f

P
at

te
rn

Fig.5 Relationship between the coverage of design pattern and software scale

V. Conclusion

Different kinds of networks have different typical connection mode. The local network compose of

these connections is considered as the basic constituent element of the whole network, the structural

characteristics of which reflect the overall characteristics of network. Design patterns are basic elements

constituting OO software system. The macrostructure stability of OO software system is analyzed according to

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
No. of software

C

Research on stability of software structure based on design patterns

www.ijres.org 27 | Page

the study on structural characteristics of design patterns and patterns’ application in the system. It is finds that

design patterns have positive impact on stability of software structure described by Coverage of Design Patterns

defined in this paper based on analysis on stability of design patterns according to Lyapunov method. It is a new

research tool that metric stability of software system by that of microstructure of design patterns according to

stable structure of design patterns has positive impact on the stability of whole system structure, but the

quantitative relationship between these two kinds of structures needs to be studied further. As to the software in

which design patterns are applied infrequently, it is needed other supplementary tools to metric the structural

stability. That is what we’ll do in further research.

VI. Acknowledgements

The research work was supported by Fundamental Research Foundation of the Ministry of Education

of China under Grant No. N110304003

References

[1] Elish M O and Rine D. Indicators of structural stabilitu of object-oriented designs: a case study. Proc. 29th Annual IEEE/NASA

Software Engineering Workshop, Marriott Greenbelt, MD, 2005, 183-192.

[2] Valverde S, Cancho R F, SoléR. Scale Free Networks from Optimal Design, Europhysics Letters, 60(4), 2002, 512-517.

[3] Myers C R. Software systems as complex networks: Structure, function, and evolvability of software collaboration graphs ,

Physics Review E, 68, 2003, 1-15.

[4] Wheeldon R and Counsell S. Power law distributions in class relationships, Proc. 3rd IEEE International Workshop on Source

Code Analysis and Manipulation, Amsterdam, 2003, 45-54.

[5] Baxter G, Frean M, Noble J, et al. Understanding the shape of Java software, ACM SIGPLAN Notices, 41(10), 2006, 397-412.

[6] Potanin A, Noble J, Frean M, et al. Scale-free geometry in OO programs, Communications of the ACM, 48(5), 2005, 99-103.

[7] Moura A P S, Lai Y-C and Motter A E. Signatures of small-world and scale-free properties in large computer programs, Physical

Review E, 68, 2003, 17-22.

[8] Liu B, Li D Y, Liu J, et al. Classifying Class and Finding Community in UML Metamodel Network. In Proceedings of ADMA

2005, Springer-Verlag LNAI 3584: 690-695.

[9] Keqing He, Yutao Ma, Jing Liu, et al. Software Network (Beijing: Science Press, 2008).

[10] Khalil H K. Nonlinear Systems (Englewood Cliffs, NJ: Prentice Hall, 2002).

[11] Prill R J, Iglesias P A and Levchenko A. Dynamic properties of network motifs contribute to biological network organization.

PLos Biology, 3(11), 2005, 1881-1892.

[12] Parnas D L. Designing software for ease of extension and contraction. Proc. 3rd International Conference on Software

Engineering, Atlanta, USA, 1976, 264-277.

[13] Melton H and Tempero E. An empirical study of cycles among classes in Java. Technical Report UoASE-2006-1, Department of

Computer Science at University of Auckland, 2006.

