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Abstract. In this paper, we study the complexity of sequence entropy for 𝑍𝑛  actions. After that, we 

define  𝐶𝛼 𝐹𝛼 𝜏  , ℎ𝛼 𝐹𝛼 𝜏   and the relationships between sequence entropy and complexity sequence entropy. 

Finally, comparisons between sequence entropy and complexity sequence entropy have been done. 
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I. Introduction and Background 
There are a lot of notions characterizing the variety of the behaviours of the individual trajectories of 

the ergodic dynamical systems. And it is a natural interest to determine a quantity tool dividing the individual 

trajectories. It’s also obvious that this notion must have a connection with an entropy which is considered as a 

measure of complexity and chaoticness of the dynamical systems in whole [8]. The complexity of finite object 

was introduced by A.Komogorov and V.Tihomirov in [1] and it was conjectured that for Z actions the 

complexity coincides with topological entropy [2], [3]. After introducing a notion of complexity of a finite 

object, due to A.Komogorov [8] many authors tried to give the different variants of these quantity 

characteristics. T.Kamae gave a definition of determinated trajectory and etc. [7]  

As in ergodic theory one of the main tools to study the dynamical behaviour of a topological dynamical system 

(i.e. a homeomorphism 𝑇: 𝑋 → 𝑋 where 𝑋 is a compact metric space) is to understand its fundamental factors 

and extensions. 

In the category of topological dynamical system, in 1974 Goodman [6] introduced the notion of 

topological sequence entropy and studied some properties of null systems which are defined as having zero 

topological sequence entropy for any infinite sequence. It is a natural question whether we have similar 

characterizations of topological mixing properties using topological sequence entropy. 

In [5], [11], the first characterization of topological weak mixing was obtained using sequence entropy. 

Namely, the authors localized the notion of sequence entropy by defining sequence entropy pairs and proved 

that a system is topologically weakly mixing if any pair not in the diagonal is a sequence entropy pair. 

Moreover, they showed that for a minimal system Kushnirenko’statement remains true module an almost one to 

one extension, i.e. if a minimal system is null, then it is an almost one to one extension of a topological with 

discrete spectrum [10], [9], [4]. Sequence entropy for a measure was introduced as an isomorphism invariant by 

Kushnirenko, who used it to distinguish between transformations with the same entropy and spectral invariant. It 

was also shown that an invertible measure preserving transformation has discrete spectrum if and only if for any 

sequence the sequence entropy of the system is zero [3].Recently, in[4] the notion of topological mild mixing 

was introduction. 

Let  𝑋, 𝐴, 𝜇, 𝑇  be an ergodic system. Let 𝐴 =  𝑎1, 𝑎2 , 𝑎3 , … , 𝑎𝑘  be a finite set of symbols,(alphabet); 

Ω = 𝐴𝑍𝑛
= 𝑤 =  𝑤𝑔 : 𝑤𝑔 ∈ 𝐴, 𝑔 ∈ 𝑍  

be the space of configurations with Tychonoff topology, 𝜎 be the shift in this configuration space: 

 

Definition 1.1 A topological dynamical system (TDS for short) we mean a pair  𝑋, 𝑇 where X is a compact 

metric space (with metric d) and 𝑇: 𝑋 → 𝑋 is a homeomorphism. A topological dynamical system  𝑋, 𝑇  is a 

symbolic system on 𝑍𝑛 , 𝑋 is the 𝜎 invariant closed subset of  and 𝑇 is the restriction of 𝜎 to 𝑋. 

Definition 1.2 For an arbitrary finite subset 𝐹 of 𝑍𝑛  we denote by 𝐴𝐹  the set of configuration on 𝐹. Every point 

𝑤𝐹 =  𝑤𝑔 , 𝑔 ∈ 𝐹  

on this set 𝐴𝐹  is called a configuration stamp. 

An increasing sequence of integers 

τ: 0 = τ 0 < 𝜏 1 < ⋯ < 𝜏 k − 1  
with 𝑘 = 1,2, … is called a window of size 𝑘. For 𝑘 = 1,2, … we denote by  𝑘  the window of size 𝑘 such that 

 𝑘  𝑖 = 𝑖     𝑖 = 0,1,2, … , 𝑘 − 1  
Let 𝛼 = 𝛼0𝛼1𝛼2 … be an infinite word over a finite 𝐴 with 𝑐𝑎𝑟𝑑𝐴 ≥ 2, where 𝑐𝑎𝑟𝑑𝐴 denotes the number of 

elements in 𝐴. Let 𝜏 be a windows of 𝑘. Let 𝛼 𝑛 + 𝜏  the word 𝛼𝑛+𝜏 0 𝛼𝑛+𝜏 1 …𝛼𝑛+𝜏 𝑘−1  over of length 𝑘. A 
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finite word 𝜇0, 𝜇1, … , 𝜇𝑘−1 is called a 𝜏 −factor of 𝛼 if  𝜇0, 𝜇1, … , 𝜇𝑘−1 = 𝛼 𝑛 + 𝜏  for some  𝑛 = 0,1,2, … . The 

set of 𝜏 −factor of 𝛼 is denote by 𝐹𝛼 𝜏 . We also denote  𝐹𝛼 𝑘 = 𝐹𝛼  𝑘    7 . 
 

II. Sequence Entropy 
Let be 𝐴 a finite set #𝐴 ≥ 2. Let 𝑁 =  0,1,2,3, …   and 𝐴𝑁  be the product space. Let 𝑋𝑛 𝑛 ∈ 𝑁  be the 

projection 𝐴𝑁 → 𝐴 defined by 𝑋𝑛 = 𝛼 𝑛  for any 𝛼 ∈ 𝐴𝑁 . Let 𝜎 be the shift on the space 𝐴𝑁 . Let  τ: 0 = τ 0 <
𝜏 1 < ⋯ < 𝜏 k − 1 , 0 be an infinite sequence of integers. We define sequence entropy 

 ℎ𝛼 𝐹𝛼 𝜏  = lim
𝑘→∞

𝑠𝑢𝑝
1

 𝑘 
𝐻 𝑋𝜏 0 , 𝑋𝜏 1 , 𝑋𝜏 2 , … , 𝑋𝜏 𝑘−1  . 

where 𝑋0 , 𝑋1, 𝑋2, …  are considered as random variables on the probability space  𝐴𝑁 , .   and 𝐻 …   is the 

Shannon’s entropy of random variables. 

Corollary 2.1.  For 𝛼 ∈ 𝐴𝑁 , assume that 

𝜇𝛼 = 𝑤 − lim
𝑛→∞

1

𝑛
 𝛿𝑇𝑖 𝛼 

𝑛−1

𝑖=0

 

exits, where 𝛿𝑥  is the unit measure at 𝑥 ∈ 𝐴𝑁  and the “w-lim” implies the weak limit on the space of measures 

[7]. 

Let 𝐴 be an algorithm defined on some subset of a space of all finite  0,1  words and taking values in the set of 

all finite words of 𝐴 and 𝑙 𝑝  be an amount of sings in a  0,1  word p: 

Now let 𝐶𝑝 𝑋  define comlexity of the configuration space 𝑤 ∈ 𝑋 relatively to the program 𝑃 as 

𝐶𝑝 𝑋 = lim
𝑘→∞

𝑠𝑢𝑝𝑤∈𝑋

1

 𝑘 
𝐶𝑝 𝑊|𝐼𝑘  

where 𝐼𝐾 =   𝑖1 , 𝑖2 , 𝑖3 , … , 𝑖𝑛 ∈ 𝑍𝑁 : −𝑘 ≤ 𝑖𝑗 ≤ 𝑘, 𝑗 = 1,2,3,… , 𝑛 ,     𝐼𝑘  =  2𝑘 + 1 2. 

Let 𝑃 be such a program that for an arbitrary program 𝑃′ we have a constant 𝐶 𝑃, 𝑃′  such that for every stamp 

the inequality 

𝐶𝑝 𝑋 ≤ 𝐶𝑝 ′ 𝑋 + 𝐶𝑝 𝑃, 𝑃′     2 . 

 

III. Complexity of Sequence Entropy 
We define the complexity 𝐹𝛼 𝜏  in the usual sense and the maximal pattern complexity by 𝑝𝛼 𝑘  as a function 

on 𝑘 ∈  1,2,3, …   by 

𝑝𝛼 𝑘 = # 𝛼𝑛+𝜏 0 , 𝛼𝑛+𝜏 1 , 𝛼𝑛+𝜏 2 , … , 𝛼𝑛+𝜏 𝑘−1 : 𝑛: 1,2, …  , 

𝑝∝ 𝜏 = 𝑠𝑢𝑝𝜏#𝑝∝ 𝑘 . 
Where the "sup" is taken over all windows 𝜏 of size 𝑘. 

Now we define the complexity 𝐶𝛼 𝐹𝛼 𝜏   space of configurations with Tychonoff topology: 

𝐶𝛼 𝐹𝛼 𝜏  = lim
𝑘→∞

𝑠𝑢𝑝
1

 𝑘 
 𝑝𝛼 𝜏  . 

For windows 𝜏 and 𝜏 ′ of size 𝑘 and 𝑘 + 1, respectively, such that 𝜏 𝑖 = 𝜏 ′(𝑖) for 𝑖 = 1,2,3, … 𝑘, 
we call 𝜏′ an immediate extension of 𝜏. 

Proposition 3.1. For every symbolic system  𝑋, 𝑇  and windows 𝜏 and 𝜏′ of the size 𝑘, 

𝐶𝛼 𝐹𝛼 𝜏′  = 𝐶𝛼 𝐹𝛼 𝜏   

Let 𝛼 be a recurrent infinite word over a finite set  𝐴. For every symbolic system  𝑋, 𝑇  and arbitrary optimal 

programs 𝑃1 and  𝑃2,   let us prove the inequality 

𝐶𝛼 𝐹𝛼 𝜏′  ≤ 𝐶𝛼 𝐹𝛼 𝜏   

From the definition of an asymptotically optimal program we have for an arbitrary stamp 𝑝𝛼 𝑘  

𝐶𝛼 𝐹𝛼 𝜏′  = 𝐶𝛼 𝐹𝛼 𝜏  + 𝐶𝛼 𝑃1 , 𝑃2  

where 𝐶𝛼 𝑃1 , 𝑃2  is a constant. Thus 

𝑠𝑢𝑝𝑤∈𝑋𝐶𝛼 𝑝𝛼 𝜏′  ≤ 𝑠𝑢𝑝𝑤∈𝑋𝐶𝛼 𝑝𝛼 𝜏  + 𝐶𝛼 𝑃1 , 𝑃2  
and then  

1

 𝑘 
𝑠𝑢𝑝𝑤∈𝑋𝐶𝛼 𝑝𝛼 𝜏′  ≤

1

 𝑘 
𝑠𝑢𝑝𝑤∈𝑋𝐶𝛼 𝑝𝛼 𝜏  +

1

 𝑘 
𝐶𝛼 𝑃1 , 𝑃2  

But for every constant 𝐶𝛼 𝑃1 , 𝑃2  we have 

lim
𝑘→∞

1

 2𝑘 + 1 
𝐶𝛼 𝑃1 , 𝑃2 = 0 

So  

𝐶𝛼 𝐹𝛼 𝜏′  ≤ 𝐶𝛼 𝐹𝛼 𝜏   

Corollary 3.2.  For  𝛼 ∈ 𝐴𝑁  , assume that 
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ℎ𝛼 𝐹𝛼 𝜏  = lim
𝑘→∞

𝑠𝑢𝑝
1

 𝑘 
𝐻 𝑋𝜏 0 , 𝑋𝜏 1 , 𝑋𝜏 2 , … , 𝑋𝜏 𝑘−1   

Assume further that the dynamical symbolic system  𝑋, 𝑇  has a partially continuous map.  

Then, we have 

𝐶𝛼 𝐹𝛼 𝜏  = lim
𝑘→∞

𝑠𝑢𝑝
1

 𝑘 
 𝑝𝛼 𝑘  > 0 

Proof. Let  𝑋, 𝐴, 𝜇, 𝑇  be an ergodic system. We consider 𝑋𝑛  is a random variables on the probability 

space 𝑋, 𝑇 . Let 𝜏 be a windows of 𝑘. Since the random variable 𝑋𝜏 0 , 𝑋𝜏 1 , 𝑋𝜏 2 , … , 𝑋𝜏 𝑘−1  on the space of 

words over 𝐴 of length 𝑘 has a distribution which is supported by 𝐹𝛼 𝜏 , we have  

ℎ 𝐹𝛼 𝜏  = lim
𝑘→∞

𝑠𝑢𝑝
1

 𝑘 
𝐻 𝑋𝜏 0 , 𝑋𝜏 1 , 𝑋𝜏 2 , … , 𝑋𝜏 𝑘−1  

≤ lim
𝑘→∞

𝑠𝑢𝑝
1

 𝑘 
log2 #𝐹𝛼 𝜏 ≤ lim

𝑘→∞
𝑠𝑢𝑝

1

 𝑘 
𝑝𝛼 𝜏 

 

There exists an infinite sequence  τ: 0 = τ 0 < 𝜏 1 < ⋯ < 𝜏 k − 1 ,…  such that ℎ𝛼 𝐹𝛼 𝜏  > 0. Therefore  

lim
𝑘→∞

𝑠𝑢𝑝
1

 𝑘 
𝑝𝛼 𝑘 > 0 

Theorem 3.3.  Let  𝑋, 𝑇  be a symbolic dynamical system. Then 

ℎ 𝜎 = lim
𝑘→∞

𝑠𝑢𝑝
1

 𝑘 
log2𝐴𝑘 , 

where  𝐴𝑘 = 𝐶𝑎𝑟𝑑  𝑤|Ik
: w ∈ X    2 . 

Theorem 3.4.  Let  𝑋, 𝑇  be a symbolic dynamical system on  𝒁𝒏 . Then  

𝐶𝛼 𝐹𝛼 𝜏  = ℎ𝛼 𝐹𝛼 𝜏  . 
 

Proof. Let the complexity for sequence entropy 𝐶𝛼 𝐹𝛼 𝜏   of the space 𝑋 be finite and equal to 𝑏. So we have 

lim
𝑘→∞

1

 𝑘 
𝑠𝑢𝑝𝑤∈𝑋𝐶𝛼 𝑝𝛼 𝑘  = 𝑏. 

Then let 𝜀 > 0 be an arbitrary number. There is some 𝑛0 ∈ 𝑁 such that her 𝑘 > 𝑛0
1

 𝑘 
  

𝑠𝑢𝑝𝑤∈𝑋𝐶𝛼 𝑝𝛼 𝑘  < 𝑏 + 𝜀. 

So we have 

𝑠𝑢𝑝𝑤∈𝑋𝐶𝛼 𝑝𝛼 𝑘  <  𝑏 + 𝜀  𝑘 .    (1) 

The inequality shows us that the number of different restrictions of points of 𝑋 on the  𝑝𝛼 𝑘   set is not bigger 

than 2 𝑏+𝜀  𝑘 +1. 

To prove this, we can write from the definition, 

𝜉:  0,1 𝑛
∞

𝑛=1

→  𝐴𝐹

𝐹⊂𝑍
𝐶𝑎𝑟𝐹 <∞

 

for any program. Now we will find some set U such that 

𝑈 ⊂   0,1 𝑛
∞

𝑛=1

   𝑎𝑛𝑑 𝜉 𝑈 = 𝑉 

where 

𝑉 =  𝜏 ′ =  𝑤𝑔 , 𝑔 ∈ 𝐼𝑘   ∃𝜏 ′ ∉ 𝑋, 𝜏 |Ik
= 𝜏 ′ = 𝐴𝐼𝑘 ∩ 𝑋|Ik

. 

So we have  

#𝜉−1  𝐴𝐼𝑘 ∩ 𝑋|Ik
  ≥ #  𝐴𝐼𝑘 ∩ 𝑋|Ik

   

Let fix  

𝑈 ⊂   0,1 𝑛

𝑠𝑢𝑝  𝜏|Ik  

𝑛=1

 

We will show that 

𝜉 𝑈 ⊂ 𝐴𝐼𝑘 ∩ 𝑋|Ik
 

Let us take any  

𝜏′ ∉ 𝐴𝐼𝑘 ∩ 𝑋|Ik
 

From the definition 𝐶𝛼 𝐹𝛼 𝜏′   we have  𝐶𝛼 𝐹𝛼 𝜏′  ≤ 𝑠𝑢𝑝𝐶𝛼 𝐹𝛼 𝜏  . So there is some finite word 

 𝛼1 , 𝛼2, … , 𝛼𝑛  ∈  0,1 𝑛  , 𝑛 ≤ 𝑠𝑢𝑝𝐶𝛼 𝐹𝛼 𝜏
′   such that 𝜉 𝛼1, 𝛼2, … , 𝛼𝑛 = 𝜏 ′. Thus 
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𝜉 𝑈 = 𝐴𝐼𝑘 ∩ 𝑋|Ik
 

Now we will show that 

                                                                    #𝑈 ≤ 2 𝑏+𝜀  𝑘 . 
Indeed, from (1)   we have 

𝑈 =   0,1 𝑛

𝑠𝑢𝑝  𝜏 Ik
  

𝑛=1

⊂   0,1 𝑛

 𝑏+𝜀  𝑘 

𝑛=1

=  2𝑛

 𝑏+𝜀  𝑘 

𝑛=1

= 2 𝑏+𝜀  𝑘 +1. 

So we have 

#𝑉 ≤ #𝑈 ≤ 2 𝑏+𝜀  𝑘 +1 

From Theorem 3.3 and (1) we have 

#   𝜏|𝐼𝑘 : 𝜏 ∈ 𝑋𝑛   ≤ 2 𝑏+𝜀  𝑘 +1, 
and then 

lim
𝑘→∞

𝑠𝑢𝑝
1

𝑘
log2 #    𝜏𝐼𝑘 : 𝜏 ∈ 𝑋𝑛    ≤ lim

𝑘→∞
𝑠𝑢𝑝

1

𝑘
log2 # 𝑏+𝜀  𝑘 +1 

ℎ 𝜏 ≤
1

𝑘
log2 #    𝜏𝐼𝑘 : 𝜏 ∈ 𝑋𝑛   ≤ 𝑏 + 𝜀. 

Hence  

ℎ𝛼 𝐹𝛼 𝜏  ≤ 𝐶𝛼 𝐹𝛼 𝜏  . 

Now we will prove the inverse inequality. Let  ℎ𝛼 𝐹𝛼 𝜏  ≤ 𝑏. Then for 𝜀 > 0 there exists 𝑛0 ∈ 𝑁 such that 

∀𝑘 > 𝑛0 we write 
1

 𝑘 
log2 #    𝜏 𝐼𝑘  : 𝜏 ∈ 𝑋𝑛   ≤ 𝑏 + 𝜀 

log2#   𝜏 𝐼𝑘  : 𝜏 ∈ 𝑋𝑛    ≤  𝑏 + 𝜀  𝑘  

#   𝜏 𝐼𝑘  : 𝜏 ∈ 𝑋𝑛   ≤ 2 𝑏+𝜀  𝑘 +1. 
Now let us fix some 𝑘 > 𝑘0. For this 𝑘 we can define some finite program 𝜉 such that it is defined on the finite 

𝛼 ∈  0,1  𝑏+𝜀  𝑘 +1  and give us all the finite restriction of the space X on 𝐼𝑘 . Now we will continue with the 

program 𝜉 in the following way. 

 One will divide the big cube 𝐼𝑘𝑚  into 
 𝐼𝑘𝑚  

 𝐼𝑘  
 domains every part of which is equal to Ik and now consider the 

program 𝜉 on each domain of the big cube. Certainly this program 𝜉 will be defined on the  0,1  words of length 

not bigger than  

 𝑏 + 𝜀 𝑘
 𝐼𝑘𝑚  

 𝐼𝑘  
=  𝑏 + 𝜀  𝑘𝑘𝑚   , 

thus the complexity of the space 𝑋 relatively to this program 𝜉 is not bigger than 𝑏 + 𝜀 .  Because of that the 

complexity of an arbitrary asymptotically optimal program  𝜉 will not be bigger than b. 

The proof is complete. 
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