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Abstract: In this paper, we propose a high order continuation based on time power series expansion and time 

rational representation called Padé approximants for solving nonlinear structural dynamic problems. The 

solution of the discretized nonlinear structural dynamic problems, by finite elements method, is sought in the 

form of a power series expansion with respect to time. The Padé approximants technique is introduced to 

improve the validity range of power series expansion. The whole solution is built branch by branch using the 

continuation method. To illustrate the performance of this proposed high order continuation, we give some 

numerical comparisons on an example of forced nonlinear vibration of an elastic beam. 
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I. Introduction 
During the last two decades, several research activities have been devoted to the development of 

efficient algorithms for accessing numerically to the response of a nonlinear elastic structure subjected to 

dynamic loading. In literature, there is a variety of numerical approaches for solving this type of nonlinear 

dynamic problems. Some of them are currently implemented in several computer codes. The most popular ones 

are of iterative or prediction-correction type [1, 2, 3, 4, 5]. 

These methods are generally based on direct integrations of the equations that govern the studied 

nonlinear dynamic problems and which employ procedures for spatial classical discretization by finite elements, 

finite differences, finite volumemethods.... The time integration is performed by an implicit or explicit time 

scheme. These methods work very well and allow to obtain the nonlinear dynamic response, but this might 

require a very important CPU time of computation especially for implicit algorithms. 

The implicit schemes are unconditionally stable and allow more freedom on the choice of time step 

size, which will be only limited by the accuracy requirements [3, 6]. Due to the large size of media meshes, the 

implicit schemes require large memory as well as many computations. For example, the Newmark implicit time 

schemes are unconditionally stable if the Newmark parameters are:   and   satisfy 
 

 
      [6]. As for 

explicit schemes, they are conditionally stable. In many situations this forces the time step size to be very small 

and causes an increase in the number of time steps required for the integration. The explicit scheme can lead to 

stability problems related to time step size, when the structural mesh is much smaller than that for the media 

mesh. 

These numerical methods permit to solve the considered nonlinear structural dynamic problem in a step 

wise fashion and a full point by point description is obtained. Previous research reported that the perturbative 

methods coupled with implicit time schemes are well adapted to the resolution of these of nonlinear structural 

dynamic problems. These high order implicit algorithms are variants of the Asymptotic Numerical Method 

(ANM) [7]. They are derived from associating homotopical transformation, space time discretisation procedures 

and the perturbative analysis. The adopted parameter perturbation is artificially introduced via the homotopical 

transformation. A key point of these implicit high order algorithms is the possibility to choose an operator and to 

compute many time steps with a single matrix triangulation. Other perturbation analyses using the time variable 

as perturbation parameter are firstly proposed in [8, 9]. The Qaisi’s work has been devoted to study the 

nonlinear vibration of clamped-supported beams. The dynamic response is sought in the form of a double series 

with respect to spatial and temporal variables introducing a time scale varying in [−1,+1] and that oscillates 

harmonically. To investigate the linear dynamic problems having a small number degrees of freedom, Fafard 

and al. have applied a time perturbation method to obtain the linear dynamic response of the structure. This 

alternative has been also extended to multi degrees of freedom linear dynamic problems. 
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The aim of this work is to extend this idea of time series expansion to nonlinear structural dynamic 

problems with multidegrees of freedom, and secondly to introduce other fractional representations based on the 

Padé approximants [12] in order to ameliorate the validity range of the considered time power series expansion. 

The whole nonlinear dynamic response of the structure is obtained by continuation method [12]. The efficiency 

of the proposed high order continuation is illustrated on an example of nonlinear forced vibration beam. A 

comparison with Newton Raphson method coupled with Newmark implicit scheme [6] is presented. 

 

II. Governing nonlinear structural dynamic equations 
Let’s consider a tridimensional nonlinear elastic structure occupying a volume   of boundary    The structure, 

made of an isotropic homogeneous elastic material of density  , is subjected to a prescribed displacement    on 

a part     and to a density of surface forces F on the complementary    . Moreover, is submitted to a density 

of body forces   (see figure 1).  

 
Figure 1. Three-dimensional elastic structure 

 

Neglecting the damping forces and applying the virtual work principle, the dynamic motion of the structure is 

given by the variational formulation: 

 

 
 
 

 
   

   

   
    

 
        

 
       

 
       

   

                                                                                    
  

  
                                                                                 

                                                                            

      (2.1) 

 

where   is the displacement vector,      ,        and       are respectively the initial and boundary conditions, 

     is the nonlinear Green-Lagrange strain tensor defined by : 

 

                            (2.2) 

 

with       and          are respectively the linear and nonlinear quadratic parts of strain tensor,   is the Piola-

Kirchhoff stress tensor connected to      via the constitutive law: 

 

                  (2.3) 

 

with   is the elastic tensor. The aim of this work is to propose a high order continuation for solving the 

nonlinear dynamic problem governed by the equations (2.1), (2.3). This algorithm is developed using finite 

elements method and the power series expansion and rational representation called Padé approximants with 

respect to time variable  . The proposed algorithm is presented and tested in the following sections. 

 

III. The proposed algorithm 
To solve the variational problem (2.1), (2.3), we develop, in this section, a high order continuation 

based on the following three steps: 

a-  Space discretization by finite elements method of the nonlinear equations (2.1), (2.3) 

b-  The solution of these discretized equations is sought in the form of a power series expansion with respect to 

time t. This power series representation is improved by the so-called Padé approximants [12] 
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c-  Application of the continuation method to build the whole solution branch by branch [12]. 

 

3.1. Space discretization by finite elements method 

The space discretization of the equations (2.1) and (2.3) by the finite elements method [1, 2, 13] is 

obtained in the following form: 

 

 
  
 

  
          

               
     

          
 

 
                                  

                                                                    

                                                                     
                                                                    

       (3.1) 

 

where   and    are respectively the nodal displacement and acceleration vectors,   ,     and     are respectively 

the discretized initial and boundary conditions,   is the shape matrix such that        and             
with   ,     are the linear and nonlinear strain matrix corresponding respectively to the discretization of the 

linear and nonlinear parts of  ,   is the matrix of elasticity and   is the space discretized forces vector. 

Using the usual notations, the expression (3.1-a) can be written in the matrix form: 

 

                    (3.2) 

 

where 

 

 
           

   

               
 

 
         

  
   

        (3.3) 

 

are the mass and stiffness matrices. The time integration of the nonlinear problem (3.2) completed by (3.1-b) 

and (3.1-c) is generally carried out by classical numerical methods which use explicit or implicit time schemes 

[2, 3, 14]. We present, in the following section, another alternative for solving the nonlinear system (3.2), (3.1-

b) and (3.1-c). It is based on the power series expansion with respect to time  . 
 

3.2. Power series expansion technique 

The structural dynamic response q(t) of nonlinear problem (3.2), (3.1-b) and (3.1-c) is sought in the 

form of a power series expansion with respect to time          truncated at the order p:  

 

                       
             

                             (3.4) 

 

 

where the unknown vector    is time independent,       is the validity range of the series (3.4), see [15] and    

is the initial time. Then, we expand the stress vector   with respect to          in the form: 

 

S           
   

 
                                 (3.5) 

 

and we assume, in addition, that the vector force     , in the problem (3.2), is developable in time up to the 

order         as: 

 

F           
   

 
            (3.6) 

 

By substitution of (3.4), (3.5) and (3.6) in (3.2), (3.1-b), we get the terms    and                of time series 

(3.4) and (3.5) are given by the following expressions: 

For      : 

 

 
                                        

        
 

 
          

         (3.7) 

 



A high order continuation based on time power series expansion and time rational representation for 

www.ijres.org                                                                32 | Page 

For      : 

 

 
                                         

        
 

 
          

         (3.8) 

 

 

For          : 

 

 
   

 

      
                   

 
                      

 
   

     
    

                       
   
                                                                                       

   (3.9) 

 

The expressions (3.7), (3.8) and (3.9) give each term of the series (3.4) and (3.5) in function of those 

computed at previous orders by inverting only one mass matrix  . They are fully determined and the solution is 

computed at any time in the interval          . It is important to underline that the validity range           of 

the series representation (3.4) is finite and must be computed. 

 

3.3. Validity range of the power series 

When the power series expansions (3.4) and (3.5) are truncated at a given order  , it is valid only up to 

a certain maximal time       [7, 12], given by the criterion: 

 

        
    

    
 

 

   
         (3.10) 

 

which requires that the power series representation ceases to be valid when the difference between the power 

series at two consecutive orders is small than a tolerance parameter _. This way gives the validity range that 

depends on the truncate order p and on the required tolerance. The nonlinear dynamic structural response is 

computed branch by branch by using the continuation method [15]. 

 

3.4. Improvement of validity range by Padé approximants 

It is possible to improve the critical time       by replacing the power series expansion (3.4) and (3.5) 

by a rational representation one called Padé approximants [15, 16, 17]. This rational representation of the 

solution paths      and      is given in the form: 

 

 
  
              

    

    
           

  

    
                          

  
              

    

    
           

  

    
                          

    (3.11) 

 

where       are polynomials of degree   with real coefficients (            : 

 

                              (3.12) 

 

with    are calculated as in [12]. Those rational representations have been tested in many cases [18]. The Padé 

approximants improve significantly the validity range of the power series expansion (3.4) and (3.5). To get the 

critical time       of the rational representation (3.11), one has only to require that the difference between two 

rational representations at consecutive orders remains small at the end of the step. The maximal value       is 

then defined by [12]: 

 

   
 
            

 
        

   
 
           

          (3.13) 

 

where   is a tolerence parameter. The solution is obtained branch by branch using the rational representation 

(3.11) and the relation (3.13) [12]. 

 

3.5. Continuation method 
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As soon as the critical times         or         evaluated respectively by the criteria (3.10) or 

(3.13), the complete solution is obtained branch by branch by means of the continuation method [12, 15]. At the 

end of each branch, we start with the new initial conditions computed at critical time       or       of the 

previous step. 

 

IV. Application: Forced nonlinear vibrating 2D elastic beam 
We apply, in this paragraph, the proposed high order continuation in order to test its efficiency for 

solving the forced nonlinear vibration problem of a bidimensional elastic beam. We consider a    beam, of 

length           and of width         , which is made of an homogeneous, isotropic and elastic 

material with density            , Young modulus            and Poisson’s ratio       . The 

structure is clamped at one side and subjected to the other side to an harmonic force                  . 
The initial values are assumed to be equal to zero. The beam is meshed in    quadriangle    elements (see 

figure 2). 

 

 
Figure 2. Beam meshed in 12 quadriangle    elements subjected to an harmonic force   

 

The numerical results obtained, in time interval           , by the high order continuation are 

compared to those computed by the Newton Raphson method using the Newmark implicit time scheme which 

we will call next as a reference solution. The choice of this time interval is due to the smallest period of the 

excitation force F. The Newmark parameters and time step adopted in the numerical computation are:   
 

 
, 

  
 

 
,         . We have verified that the optimal timestep corresponds to         , gives a sufficient 

accuracy. For greater   , the Newton Raphson solution diverges. We note that the reference solution, in the 

considered temporal domain, is get in      iterations. In the following, we present the transversal displacement 

at loaded node versus time  . The qualities of solutions are characterized by the logarithmof the norm of residual 

vectors. This residual vector, denoted by  , is defined by: 

 

                     (4.1) 

 

4.1. Power series solution without continuation method 

The comparison of power series solutions (see equation (3.4)), truncated at orders 10, 20, 30, 40, 50, 60 

and 70, without continuation method with the Newton Raphson solution is reported in figure 3.  

 

 
Figure 3. Power series solutions (S10, S20, S30, S40, S50, S60, S70),  

truncated at orders 10, 20,30, 40, 50, 60 and 70, compared to Newton Raphson reference solution 
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The power series solutions are denoted by                         and     (dashed curves) and 

the curve of the Newton Raphson solution is plotted with full line. This figure shows that the power series 

solutions are confounded with Newton Raphson solution in the interval          . This power series 

representation (see equation (3.4)) is only valid up to critical time      . For higher truncation order (order 70), 

the power series solution seems to be valid until a critical time             . The critical time       
increases with the truncation order. Then, by increasing the truncation order, we ameliorate the quality of the 

solution. The qualities of the power series solutions are better when we increase the truncate order  . For large   

greater than   , they become more and more weak. The effect of the tolerance parameter   and of the truncation 

order   on the critical time      , without continuation process, is given in the table 1. 

 

 
Table 1. Influence of the tolerance parameter   and of the truncation order p on the critical  

time       without continuation method. 

 

One can see that the critical time       increases, for a fixed tolerance  , with the truncation order and 

decreases, for a fixed order  , with the tolerance parameter  . 

 

4.2. Complete solution 

In the table 2, we report the influence of the tolerance parameter   and the truncation order   on the 

number of steps necessary to obtain the complete solution on the time interval           .The symbols      

and   , in the table 2, denote respectively the number of continuation steps and the number of computed right 

hand sides such that :             . Optimal orders are those mentioned in bold in table 2. 

 

 
Table 2. Influence of the tolerance parameter   and of the truncate order p on the number continuation steps 

 

Fixing the time interval            and for a given tolerance parameter        , for example, the 

optimal truncation order for the continuation method is       , it corresponds to a minimal number of 

computed right hand sides. The complete solution computed by the high order continuation, denoted by       , 
using the power series truncated at order      with         compared to the Newton Raphson solution 

denoted by     is plotted in figure 4. 
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Figure 4. Comparison between the reference solution and the power series solution truncated at order 30 with continuation 

method,        . 

 

The proposed high order continuation gives the same result as the Newton Raphson method as shown 

in figure 4. The complete solution is obtained in 12 continuation steps, with the parameters      and   
     . This solution is obtained by computing     right hand sides and inverting only one mass matrix. While, 

the Newton Raphson method gives the same result using 2000 iterations, an inversion of tangent matrix at each 

iteration is required      triangulations, to obtain the complete solution. 

 

4.3. Padé approximants solution without continuation method 

The Padé series solutions (see equation (3.11)) denoted respectively by             and    , 

truncated at respective orders          and    without continuation method compared to Newton Raphson 

reference solution     are plotted in figure 5 with        . 

 

 
Figure 5. Comparison between the Newton Raphson reference solution (N) and Padé approximants solution (P10, P20, P30 

and P40) without continuation method truncated at respective orders 10, 20, 30 and 40 

 

As for the power series solution, the validity range of the time Padé solution increases with truncature 

order. The qualities of these four Padé approximants solutions denoted respectively by                and 

     without continuation method compared to that      computed by the Newton Raphson method are 

reported in figure 6. 

 
Figure 6. Comparison of qualities of Padé approximants solutions (rP10, rP20, rP30 and rP40) truncated at respective 

orders 10, 20, 30 and 40 without continuation method and the Newton Raphson reference solution (rN) 
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One can see, on figure 7, that the use of Padé approximants ameliorates substantially the validity range 

of the power series solution. The three qualities of these solutions are given in the figure 8. Let us remark that 

the power series solutions and Padé approximants have the same quality in the interval            . For 

          , the quality of Padé representation truncated at order    seems to be better than power series 

expansion. For very small time           , the power series expansion and its improvement by Padé 

approximant are more accurate than the Newton Raphson one. 

 

 
Figure 7. Comparison between the Padé approximants solution (P30), power series solution (S 30) truncated at orders 30 

without continuation method and the Newton Raphson reference solution (N) 

 
Figure 8. Comparison of the qualities of the Pad´e approximants solution (rP30), power series solution (rS 30) truncated at 

orders 30 without continuation method and the Newton Raphson reference solution (rN) 

 

4.4. Padé approximants solution with continuation method 

The complete solution obtained by the Padé approximants solution truncated at order    using the 

continuation method is reported in figure 9 and compared to those obtained by power series and reference 

solutions. 

 
Figure 9. Comparison of three solutions: Padé approximants (P30c), power series (S 30c) truncated at order 30 with 

continuation process and reference solution (N),        ,       . 

 

With the Padé approximants, this solution path requires only 9 steps, whereas the same solution 

requires 12 steps with using the power series expansion. So, it appears that the use of the Padé approximants 
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leads to a reduction of the computational steps. The Comparison of the qualities of the Padé approximants 

solution       , power series solution        truncated at orders 30 and the Newton Raphson solution (rN) are 

represented in figure 10. 

 
Figure 10. Comparison of the qualities of the Padé approximants solution (rP30), power series solution (S 30c) truncated at 

orders 30 with continuation method and the Newton Raphson reference solution (rN) 

 

This example shows that the Padé approximants combines efficiency and robustness. Indeed, it reduced 

the number of steps with respect to the power series and it permitted to compute this vibration problem without 

any difficulty. 

 

V. Conclusion 
The paper has described an algorithm for solving nonlinear structural dynamic problems. It is based on 

the combination of a classical finite elements discretization procedure, a time power series expansion and time 

rational representation called Padé approximants and a continuation method. The different terms of this 

asymptotic expansion are obtained in a simple recurrent way. Their numerical computation requires only a 

single inversion of the mass matrix. The introduction of Padé approximants permits to improve the validity 

range of the power series solutions. The effectiveness of the proposed algorithm is tested in a problem of a 

forced nonlinear vibration of an elastic beam. The determination of the whole solutions improved by Padé 

approximants is performed by means of a continuation method. 
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