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Abstract: In this paper, we propose a high order continuation based on time power series expansion and time
rational representation called Padé approximants for solving nonlinear structural dynamic problems. The
solution of the discretized nonlinear structural dynamic problems, by finite elements method, is sought in the
form of a power series expansion with respect to time. The Padé approximants technique is introduced to
improve the validity range of power series expansion. The whole solution is built branch by branch using the
continuation method. To illustrate the performance of this proposed high order continuation, we give some
numerical comparisons on an example of forced nonlinear vibration of an elastic beam.
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. Introduction

During the last two decades, several research activities have been devoted to the development of
efficient algorithms for accessing numerically to the response of a nonlinear elastic structure subjected to
dynamic loading. In literature, there is a variety of numerical approaches for solving this type of nonlinear
dynamic problems. Some of them are currently implemented in several computer codes. The most popular ones
are of iterative or prediction-correction type [1, 2, 3, 4, 5].

These methods are generally based on direct integrations of the equations that govern the studied
nonlinear dynamic problems and which employ procedures for spatial classical discretization by finite elements,
finite differences, finite volumemethods.... The time integration is performed by an implicit or explicit time
scheme. These methods work very well and allow to obtain the nonlinear dynamic response, but this might
require a very important CPU time of computation especially for implicit algorithms.

The implicit schemes are unconditionally stable and allow more freedom on the choice of time step
size, which will be only limited by the accuracy requirements [3, 6]. Due to the large size of media meshes, the
implicit schemes require large memory as well as many computations. For example, the Newmark implicit time

schemes are unconditionally stable if the Newmark parameters are: f and y satisfy % <y <2p [6]. As for

explicit schemes, they are conditionally stable. In many situations this forces the time step size to be very small
and causes an increase in the number of time steps required for the integration. The explicit scheme can lead to
stability problems related to time step size, when the structural mesh is much smaller than that for the media
mesh.

These numerical methods permit to solve the considered nonlinear structural dynamic problem in a step
wise fashion and a full point by point description is obtained. Previous research reported that the perturbative
methods coupled with implicit time schemes are well adapted to the resolution of these of nonlinear structural
dynamic problems. These high order implicit algorithms are variants of the Asymptotic Numerical Method
(ANM) [7]. They are derived from associating homotopical transformation, space time discretisation procedures
and the perturbative analysis. The adopted parameter perturbation is artificially introduced via the homotopical
transformation. A key point of these implicit high order algorithms is the possibility to choose an operator and to
compute many time steps with a single matrix triangulation. Other perturbation analyses using the time variable
as perturbation parameter are firstly proposed in [8, 9]. The Qaisi’s work has been devoted to study the
nonlinear vibration of clamped-supported beams. The dynamic response is sought in the form of a double series
with respect to spatial and temporal variables introducing a time scale varying in [-1,+1] and that oscillates
harmonically. To investigate the linear dynamic problems having a small number degrees of freedom, Fafard
and al. have applied a time perturbation method to obtain the linear dynamic response of the structure. This
alternative has been also extended to multi degrees of freedom linear dynamic problems.
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The aim of this work is to extend this idea of time series expansion to nonlinear structural dynamic
problems with multidegrees of freedom, and secondly to introduce other fractional representations based on the
Padé approximants [12] in order to ameliorate the validity range of the considered time power series expansion.
The whole nonlinear dynamic response of the structure is obtained by continuation method [12]. The efficiency
of the proposed high order continuation is illustrated on an example of nonlinear forced vibration beam. A
comparison with Newton Raphson method coupled with Newmark implicit scheme [6] is presented.

I1.  Governing nonlinear structural dynamic equations
Let’s consider a tridimensional nonlinear elastic structure occupying a volume Q of boundary dQ The structure,
made of an isotropic homogeneous elastic material of density p, is subjected to a prescribed displacement u,; on
a part 42, and to a density of surface forces F on the complementary d.2,. Moreover, is submitted to a density
of body forces f (see figure 1).

Figure 1. Three-dimensional elastic structure

Neglecting the damping forces and applying the virtual work principle, the dynamic motion of the structure is
given by the variational formulation:

[y p2E5ud + [, S:6ydQ = [, foudf+ [, Féuds
ux, t =ty) = ug(x)

a .

% (e, = 1) = ()

u(x, t) = uy(t) on x €9Q,

(2.1)

where u is the displacement vector, u,(x), 1ty (x) and u,(t) are respectively the initial and boundary conditions,
y(u) is the nonlinear Green-Lagrange strain tensor defined by :

Y@ =y, (W) +yy(w,w) (2.2)

with y; (w) and yy (u, w) are respectively the linear and nonlinear quadratic parts of strain tensor, S is the Piola-
Kirchhoff stress tensor connected to y (u) via the constitutive law:

S=D:y(w) (2.3)

with D is the elastic tensor. The aim of this work is to propose a high order continuation for solving the
nonlinear dynamic problem governed by the equations (2.1), (2.3). This algorithm is developed using finite
elements method and the power series expansion and rational representation called Padé approximants with
respect to time variable t. The proposed algorithm is presented and tested in the following sections.

I11.  The proposed algorithm
To solve the variational problem (2.1), (2.3), we develop, in this section, a high order continuation
based on the following three steps:
a- Space discretization by finite elements method of the nonlinear equations (2.1), (2.3)
b- The solution of these discretized equations is sought in the form of a power series expansion with respect to
time t. This power series representation is improved by the so-called Padé approximants [12]
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c- Application of the continuation method to build the whole solution branch by branch [12].

3.1. Space discretization by finite elements method
The space discretization of the equations (2.1) and (2.3) by the finite elements method [1, 2, 13] is
obtained in the following form:

( Sefpep NNAQ® + 3, [,. B(g)SAO® = F
4 S=Cy=D (BL +§BNL(q))q

3.1
q(t =to) = qo 58
LQ(t =tp) = qo
q=4q on 0%,

where g and § are respectively the nodal displacement and acceleration vectors, q,, ¢, and g, are respectively
the discretized initial and boundary conditions, N is the shape matrix such that u = Nq and B = B, + By, (q)
with B;, By, are the linear and nonlinear strain matrix corresponding respectively to the discretization of the
linear and nonlinear parts of y, C is the matrix of elasticity and F is the space discretized forces vector.

Using the usual notations, the expression (3.1-a) can be written in the matrix form:

MG+ K(@Qq=F (3.2)

where

M=3,[.p NNdO°

1 (3.3)
K(q) = 2. fﬂe ‘B(q)(B, + EBNL (9))dq°

are the mass and stiffness matrices. The time integration of the nonlinear problem (3.2) completed by (3.1-b)
and (3.1-c) is generally carried out by classical numerical methods which use explicit or implicit time schemes
[2, 3, 14]. We present, in the following section, another alternative for solving the nonlinear system (3.2), (3.1-
b) and (3.1-c). It is based on the power series expansion with respect to time t.

3.2. Power series expansion technique

The structural dynamic response q(t) of nonlinear problem (3.2), (3.1-b) and (3.1-c) is sought in the
form of a power series expansion with respect to time (t — t,) truncated at the order p:

q(t) =qo + (t - tO)Ql + (t - tO)ZqZ + et +(t - to)pqp' te H0: tmaxs]] (3-4)
where the unknown vector q; is time independent, .4, is the validity range of the series (3.4), see [15] and ¢,
is the initial time. Then, we expand the stress vector S with respect to (¢ — t,) in the form:

S(t) = Z?:o(t - to)js' ’ te [0: tmaxs] (3-5)

and we assume, in addition, that the vector force F(t), in the problem (3.2), is developable in time up to the
order (p — 2)as:

F(t) = XF_o(t — to)F; (3.6)
By substitution of (3.4), (3.5) and (3.6) in (3.2), (3.1-b), we get the terms q; and S; (0 < j < p) of time series

(3.4) and (3.5) are given by the following expressions:
Forj = 0:

qo = Up 37
{50 =D(B, + %BNL(qO))qO @.7)
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Forj = 1:
g1 = (38)
S, =D(B, + ;BNL(%))% '
For2 <j < p:
1 ~ o
a; = ]-(j_l)M 1(F}—2 — e er BLSj—dee —ZL{, ZZe fge BNL(CIj—i—z)SidQe)

PR (3.9)
S; = D(BLq; + Xizt Bn.(4:1)qj-i

The expressions (3.7), (3.8) and (3.9) give each term of the series (3.4) and (3.5) in function of those
computed at previous orders by inverting only one mass matrix M. They are fully determined and the solution is
computed at any time in the interval [0, t,,.xs]- It is important to underline that the validity range [0, t,,qxs] Of
the series representation (3.4) is finite and must be computed.

3.3. Validity range of the power series
When the power series expansions (3.4) and (3.5) are truncated at a given order p, it is valid only up to
a certain maximal time t,,,.s [7, 12], given by the criterion:

1

Emaxs = (K ”‘“”)’H (3.10)
lla

which requires that the power series representation ceases to be valid when the difference between the power
series at two consecutive orders is small than a tolerance parameter _. This way gives the validity range that
depends on the truncate order p and on the required tolerance. The nonlinear dynamic structural response is
computed branch by branch by using the continuation method [15].

3.4. Improvement of validity range by Padé approximants

It is possible to improve the critical time t,,,.s by replacing the power series expansion (3.4) and (3.5)
by a rational representation one called Padé approximants [15, 16, 17]. This rational representation of the
solution paths g(t) and S(t) is given in the form:

B =+ (= t) 22 g+t C = )P 1y € [0, tay]
BS(t) = So + (t — to) gz:i S+ (t—to)P is , t € [0, tmaxp] (341
where D;(t) are polynomials of degree j with real coefficients (d;){j = 1,p — 1}:
D;j(t) =1+td, +t2dy + -+ t/g; (3.12)

with d; are calculated as in [12]. Those rational representations have been tested in many cases [18]. The Padé
approximants improve significantly the validity range of the power series expansion (3.4) and (3.5). To get the
critical time t,,,4, Of the rational representation (3.11), one has only to require that the difference between two
rational representations at consecutive orders remains small at the end of the step. The maximal value t, 4y, is
then defined by [12]:

||Pg (tmaxP)_Pg—1(tmaxp) ||

”Pg (tmaxp)_QO ||

<6 (3.13)

where § is a tolerence parameter. The solution is obtained branch by branch using the rational representation
(3.11) and the relation (3.13) [12].

3.5. Continuation method
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As soon as the critical times t = tyqys OF £ = tyqyp €valuated respectively by the criteria (3.10) or
(3.13), the complete solution is obtained branch by branch by means of the continuation method [12, 15]. At the
end of each branch, we start with the new initial conditions computed at critical time t,;4xs OF tpmqayp, Of the
previous step.

IV.  Application: Forced nonlinear vibrating 2D elastic beam

We apply, in this paragraph, the proposed high order continuation in order to test its efficiency for
solving the forced nonlinear vibration problem of a bidimensional elastic beam. We consider a 2D beam, of
length L = 200mm and of width [ = 10mm, which is made of an homogeneous, isotropic and elastic
material with density p = 107*Kgm™3, Young modulus E = 10°MPa and Poisson’s ratio v = 0.3. The
structure is clamped at one side and subjected to the other side to an harmonic force F = —100c0s(10000t).
The initial values are assumed to be equal to zero. The beam is meshed in 12 quadriangle Q8 elements (see
figure 2).

Figure 2. Beam meshed in 12 quadriangle @8 elements subjected to an harmonic force F

The numerical results obtained, in time interval [0,0.001s], by the high order continuation are
compared to those computed by the Newton Raphson method using the Newmark implicit time scheme which
we will call next as a reference solution. The choice of this time interval is due to the smallest period of the

excitation force F. The Newmark parameters and time step adopted in the numerical computation are: a = %

B = § At = 10~°s. We have verified that the optimal timestep corresponds to At = 10~°s, gives a sufficient

accuracy. For greater At, the Newton Raphson solution diverges. We note that the reference solution, in the
considered temporal domain, is get in 2000 iterations. In the following, we present the transversal displacement
at loaded node versus time t. The qualities of solutions are characterized by the logarithmof the norm of residual
vectors. This residual vector, denoted by R, is defined by:

R=Mq+K(q)q—F (4.1)
4.1. Power series solution without continuation method

The comparison of power series solutions (see equation (3.4)), truncated at orders 10, 20, 30, 40, 50, 60
and 70, without continuation method with the Newton Raphson solution is reported in figure 3.

0 =
$40
-5e-05 s6o
-1e-04 =
= s W
& -0.00015 -
>,
0
& -0.0002 R
j=5
2
A -0.00025 4
-0.0003 S70 R
S10 =
S30 > S50
-0.00035 . i n i .
s 5e-05 0.0001 0.00015 0.0002 0.00025 0.0003
Time

Figure 3. Power series solutions (S10, S20, S30, S40, S50, S60, S70),
truncated at orders 10, 20,30, 40, 50, 60 and 70, compared to Newton Raphson reference solution
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The power series solutions are denoted by $10, 520,530,540, 550,560 and S70 (dashed curves) and
the curve of the Newton Raphson solution is plotted with full line. This figure shows that the power series
solutions are confounded with Newton Raphson solution in the interval [0, t,4.s]. This power series
representation (see equation (3.4)) is only valid up to critical time t,,4,s. For higher truncation order (order 70),
the power series solution seems to be valid until a critical time t,,q.s = 2.107*. The critical time t,,qxs
increases with the truncation order. Then, by increasing the truncation order, we ameliorate the quality of the
solution. The qualities of the power series solutions are better when we increase the truncate order p. For large p
greater than 50, they become more and more weak. The effect of the tolerance parameter k and of the truncation

order p on the critical time t,,,,, Without continuation process, is given in the table 1.

P

k=108

k= 10-10

k= 10"12

k= 10"

10

1.08569221 107>

0.610529597 107>

0.343326022 107>

0.19306641 107>

20 | 6.38350945 107> 4.94251953 107 0.382681338 10~ 2.06296262 10~
30 | 10.1652124 107> 8.62358577 107> 7.31575775 1072 6.20627113 107>
40 | 12.3932471 107> 10.978766 107> 9.7257242 107 8.61569608 1077
50 | 14.3472306 107 13.0347112 107 11.8422642 1072 10.7589052 107>
60 | 15.5696673 107> 14.3812479 10~ 13.2835396 1072 12.2696184 107>
70 | 16.5086596 107> 15.4276596 10 14.4174443 107 13.4733788 107>
80 | 17.3235804 107> 16.3303928 107 15.3941461 107° 14.511576 107

90

17.9096622 107>

16.9965244 107

16.1299436 107>

15.3075461 107>

100

18.4172502 1072

17.5718151 10

16.7651893 107>

15.9955913 107>

110

18.8477023 107>

18.0609211 107>

17.3069834 107>

16.5845181 1077

120

19.1967345 10>

18.461977 107>

17.7553424 107

17.0757544 1072

Table 1. Influence of the tolerance parameter x and of the truncation order p on the critical
time t,,4.s Without continuation method.

One can see that the critical time t,,,,¢ increases, for a fixed tolerance k, with the truncation order and
decreases, for a fixed order p, with the tolerance parameter k.

4.2. Complete solution

In the table 2, we report the influence of the tolerance parameter x and the truncation order p on the
number of steps necessary to obtain the complete solution on the time interval [0,0.001s].The symbols NPAS
and SM, in the table 2, denote respectively the number of continuation steps and the number of computed right
hand sides such that : SM = NPAS(p — 2). Optimal orders are those mentioned in bold in table 2.

P k=10"% k=101 k=101 k=107
NPAS | SM | NPAS | SM | NPAS | SM | NPAS | SM
10 75 600 125 1000 | 209 1672 | 351 2808
20 16 288 20 360 26 468 33 594
30 10 280 12 336 14 392 16 448
40 9 342 10 380 11 418 12 456
50 7 336 8 384 9 432 10 4380
60 7 406 7 406 3 544 9 522
70 7 476 7 476 7 476 8 544
80 6 468 7 546 7 546 7 546
90 6 528 6 528 7 616 7 616
100 6 388 6 588 7 686 7 686
110 6 648 6 648 6 648 7 756
120 6 708 6 708 6 708 6 708

Table 2. Influence of the tolerance parameter k and of the truncate order p on the number continuation steps

Fixing the time interval [0,0.001s] and for a given tolerance parameter x = 10719, for example, the
optimal truncation order for the continuation method is p = 30, it corresponds to a minimal number of
computed right hand sides. The complete solution computed by the high order continuation, denoted by (S30c),
using the power series truncated at order p = 30 with k = 1071° compared to the Newton Raphson solution
denoted by (N) is plotted in figure 4.

WWW.ijres.org 34 | Page



A high order continuation based on time power series expansion and time rational representation for
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-0.0002 F -"’\/ \ / 4

Displacement

-0.0003 \ =
s
-0.0004 ~ b
-0.0005
0 0.0002 0.0004 0.0006 0.0008 0.001

Time
Figure 4. Comparison between the reference solution and the power series solution truncated at order 30 with continuation
method, x = 10710,

The proposed high order continuation gives the same result as the Newton Raphson method as shown
in figure 4. The complete solution is obtained in 12 continuation steps, with the parameters p = 30 and k =
1071°, This solution is obtained by computing 336 right hand sides and inverting only one mass matrix. While,
the Newton Raphson method gives the same result using 2000 iterations, an inversion of tangent matrix at each
iteration is required 2000 triangulations, to obtain the complete solution.

4.3. Padé approximants solution without continuation method

The Padé series solutions (see equation (3.11)) denoted respectively by P10,P20,P30 and P40,
truncated at respective orders 10,20,30 and 40 without continuation method compared to Newton Raphson
reference solution (N) are plotted in figure 5 with x = 10710,

0.0002
P30 ~
1e-04 | i

= PIO_'_'; N
g 0 /
3
&-0.0001 }
f= %
2
A 0.0002 }

3 L L P40

0.0003 .m0 -

0 5e-05 0.00010.0001£0.00020.00025).00030.000350.0004
Time

Figure 5. Comparison between the Newton Raphson reference solution (N) and Padé approximants solution (P10, P20, P30
and P40) without continuation method truncated at respective orders 10, 20, 30 and 40

As for the power series solution, the validity range of the time Padé solution increases with truncature
order. The qualities of these four Padé approximants solutions denoted respectively by rP10,rP20,rP30 and
rP40 without continuation method compared to that (rN) computed by the Newton Raphson method are
reported in figure 6.

4 > ;
2
9 P10
. \ P20
o 4 \‘_ . 3
o P3
a® P40 -~
Bt J o N N N
i T AN A TR
12 A AR, A = st 1
-14 A AR s 7SR

0  2e-05 4e-05 6605 8e-05 00001 0.000120.00014
Time
Figure 6. Comparison of qualities of Padé approximants solutions (rP10, rP20, rP30 and rP40) truncated at respective
orders 10, 20, 30 and 40 without continuation method and the Newton Raphson reference solution (rN)
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One can see, on figure 7, that the use of Padé approximants ameliorates substantially the validity range
of the power series solution. The three qualities of these solutions are given in the figure 8. Let us remark that
the power series solutions and Padé approximants have the same quality in the interval [0,5.1075s]. For
t = 5.5107°s, the quality of Padé representation truncated at order 30 seems to be better than power series
expansion. For very small time t = 5.5107°s, the power series expansion and its improvement by Padé
approximant are more accurate than the Newton Raphson one.

0 v
P30
-5e-05 |
-1e-04 +
0.00015

— Vi

-0.0002 |

Displacement

0.00025

-0.0003

$30

0 5e-05 00001 0.00015 0.0002 0.00025 00003
Time
Figure 7. Comparison between the Padé approximants solution (P30), power series solution (S 30) truncated at orders 30
without continuation method and the Newton Raphson reference solution (N)

-0.00035

log(JR!)

bt 2

NN . X . .
0 2e-05 4e-05 6e-05 8e-05 0.0001 0.00012 0.00014
Time
Figure 8. Comparison of the qualities of the Pad”e approximants solution (rP30), power series solution (rS 30) truncated at
orders 30 without continuation method and the Newton Raphson reference solution (rN)

4.4. Padé approximants solution with continuation method

The complete solution obtained by the Padé approximants solution truncated at order 30 using the
continuation method is reported in figure 9 and compared to those obtained by power series and reference
solutions.

0.0004
0.0003
P30c

X
0.0002 » N /-
1e-04 |- \/\/ \t/ P
N ) [
-0.0001 | W, \
-0.0002 F \V ‘\ / .
-0.0003 - \ / .

-0.0004 | \ / 1
RV

-0.0005 . . 3
0 0.0002 0.0004 0.0006 0.0008 0.001

Time
Figure 9. Comparison of three solutions: Padé approximants (P30c), power series (S 30c) truncated at order 30 with
continuation process and reference solution (N), x = 1071%, § = 107°.

T
~

Displacement

With the Padé approximants, this solution path requires only 9 steps, whereas the same solution
requires 12 steps with using the power series expansion. So, it appears that the use of the Padé approximants

WWW.ijres.org 36 | Page



A high order continuation based on time power series expansion and time rational representation for

leads to a reduction of the computational steps. The Comparison of the qualities of the Padé approximants
solution (rP30), power series solution (S30¢) truncated at orders 30 and the Newton Raphson solution (rN) are
represented in figure 10.

2 rpx0 1
e=10-6*
245 ™y
6 }4\71\' : " X .y r
%X,
£ 8| ] i 1 ’ ; |
:3 oo . i : |
o VNN
M ‘ J -}! C¥ LY 1 ’ u 1
-12 ; : ‘i ;
o S ..J‘ ..-'-. { i "-. " ok -
-14 L s A A " "
0 0.0002 0.0004 0.0006 0.0008 0.001

Figure 10. Comparison of the qualities of the Padé approximants solution (rP30), power series solution (S 30c) truncated at
orders 30 with continuation method and the Newton Raphson reference solution (rN)

This example shows that the Padé approximants combines efficiency and robustness. Indeed, it reduced
the number of steps with respect to the power series and it permitted to compute this vibration problem without
any difficulty.

V.  Conclusion

The paper has described an algorithm for solving nonlinear structural dynamic problems. It is based on
the combination of a classical finite elements discretization procedure, a time power series expansion and time
rational representation called Padé approximants and a continuation method. The different terms of this
asymptotic expansion are obtained in a simple recurrent way. Their numerical computation requires only a
single inversion of the mass matrix. The introduction of Padé approximants permits to improve the validity
range of the power series solutions. The effectiveness of the proposed algorithm is tested in a problem of a
forced nonlinear vibration of an elastic beam. The determination of the whole solutions improved by Padé
approximants is performed by means of a continuation method.
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