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ABSTRACT---Driver’s drowsiness poses a major threat to roadway safety and can lead to critical physical
injuries, deaths and significant economic losses. Statistics indicate the need of a reliable driver drowsiness
detection system which could alert the driver before a mishap happens. In this paper, we proposed an
algorithm to determine the level of fatigue by measuring the eye opening and closing, and warn the driver
accordingly.
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l. INTRODUCTION

The term “drowsiness” is used here to refer to the state of reduced alertness, usually accompanied by
performance and psychophysiological changes that may result in loss of alertness or being “asleep at the
wheel.” The term “driver fatigue” is also widely used to describe this condition, especially on Police Accident
Reports and in accident data files. Due to the increase in the amount of automobile in recent years, problems
created by accidents have become more complex as well. Traditional transportation system is no longer
sufficient. In recent years, the intelligent vehicle system has emerged and became a popular topic among
transportation researchers. However, the research of safety in vehicle is an important subset of intelligent
vehicle system research. Meantime, active warning system is one of the designs on active safety system. The
safety warning systems, mostly active warning systems for preventing traffic accidents have been attracting
much public attention [9]. Safe driving is a major concern of societies all over the world. Thousands of people
are killed, or seriously injured due to drivers falling asleep at the wheels each year. Recent studies show those
drivers’ drowsiness accounts for up to 20% of serious or fatal accidents on motorways and monotonous roads,
which impair the drivers’ judgment and their ability of controlling vehicles. Therefore, it is essential to
develop a real-time safety system for drowsiness-related road accident prevention. Many methods have been
developed and some of them are currently being used for detecting the driver’s drowsiness, including the
measurements of physiological features like EEG, heart rate and pulse rate, eyelid movement, gaze, head
movement and behaviors of the vehicle, such as lane deviations and steering movements. Among those
different technologies, ocular measures, such as eye-blinking and eyelid closure, are considered as promising
ways for monitoring alertness. In this paper the focus will be placed on designing a system that will accurately
monitor the open or closed state of the driver’s eyes in real-time. By monitoring the eyes, it is believed that the
symptoms of driver fatigue can be detected early enough to avoid a car accident.

II.  OURPROPOSED ALGORITHM ( FOR TRAINING)
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The first step is the image acquisition which is done by using video camera which takes the video of the driver
and convert into image frames.
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Fig.f Open, drowsy and close image

The frames of the video are further processed for face detection. In this we use viola jones algorithm to
detect face and eyes. Viola-Jones algorithm is based on exploring the input image by means of sub window
capable of detecting features. This window is scaled to detect faces of different sizes in the image. Viola Jones
developed a scale invariant detector which runs through the image many times, each time with different size.
Being scale invariant, the detector requires same number of calculations regardless of the size of the image.
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Fig.3 Face detection by viola jones algorithm
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Fig.4 Effect of the background removal on the Image with open, drowsy and close eyes

The third step is eyes detection; Similarly, Eyes are detected by using this algorithm. To detect eyes we
first detect nose and then detect pair of eyes.
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Fig.5 Detected open, drowsy and close eyes.
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Fig.6 ROI with open, drowsy and close eyes
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However, the RGB model includes brightness in addition to the colours. When it comes to human’s

eyes, different brightness for the same colour means different colour. When analysing a human eye, RGB model
is very sensitive in image brightness.
The next step is to extract the features of eyes. i.e. to convert RGB image into YCBCR image: The Cb and Cr
components give a good indication on whether a pixel is part of the skin or not. This can clearly be seen in
Figure.8, which are the Cb and Cr values of all the pixels that are part of the eye. There is a strong correlation
between the Cb and Cr values of skin pixels, to reveal the comparison between eyes and non-eyes in the YCbCr
space.

e

Fig.7 Open, drowsy and close eyes in YCbCr

Therefore, to remove the brightness from the images is second step. We use the YCbCr space since it is
widely used in video compression standards, Figure 8. shows the image in YCbCr. Since the skin-tone colour
depends on luminance, we nonlinearly transform the YCbCr colour space to make the skin clear. The main
advantage of converting the image to the YCbCr domain is that influence of luminosity can be removed during
our image processing. In the RGB domain, each component of the picture (red, green and blue) has a different
brightness. However, in the YCbCr domain all information about the brightness is given by the Y component,
since the Cb (blue) and Cr (red) components are independent from the luminosity.

The next step is to calculate the mean and standard deviation of eyes i.e. for open, drowsy and close
image
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Fig.8 Mean of open, drowsy and close eye.

B Figure 1 F=rle ) =]
File Edit Wiew Insert Taols Desktop  Window  Help ~

o
D s [ (WL DR - (2|0 =@

Std of apen eyes .drowsy eyes . close ey

6
sl

al

af
2
i I I I
o

Open Ey sta drowsy y Close Eyes Std

St valve

Fig.9 Standard deviation of open, drowsy and close eye.
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The above figures are the mean and standard deviation of open, close and drowsy eyes. This is our two
parameters which also we are taken to differentiate the open, drowsy and close eyes.
Table A:Target pattern Encoding

S.No | Class Target Pattern
1
Open(class A) 100
2
Drowsy(class B) 010
3
Close(class C) 001

The last step is to train the network by using back propagation algorithm. Our proposed neural network

model is as shown in figure 11.
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Fig.11 Proposed neural network model

Neural Network

Hidden

512 at the input nodes represent features of open, drowsy and close eyes and labels at output nodes
represent classes.
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Figure 12: Partial list of inputs
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As in Figure 13 i.e. list of inputs <512*60 double> are the features of the images that we are taken to train our
neural network. These features are of open, drowsy and close eyes. 512 is size of our image and 60 are input
images i.e. 20 of open eyes, 20 of drowsy eyes and 20 of close eyes.
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Fig.13Target pattzérn of open, drowsy and close eyes

The above figure are the three target patterns for our proposed neural network. In our work the target
vector is encoded using one hot encoding method. One-hot refers to a group of bits among which the legal
combinations of values are only those with a single high (1) bit and all the others low (0). For example, the
output of a decoder is usually a one-hot code. Table A. displays the arrhythmia classes and their corresponding
target vectors in one hot encoded form. The last step (after training) is the Image recognition for alarming
signal: The trained neural network easily predicted whether the eyes are open, close or drowsy. In this case if the
input image as close eye of the driver. Our neural network recognize the image as shown below and
automatically an alarming signal is generated that alerts the driver.
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Our neural networks recognize the image as shown below: as close eyes and automatically an alarming
signal is generated that alert the driver. The alarming signal is generated only in case of drowsy and close eyes.
In our system open eyes represent activeness and close eyes represent sleepy and fatigueness of drivers.
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I1l. RESULTS AND DISCUSSIONS
A. CONFUSION MATRIX
The performance of classifier is analyzed using confusion matrix which is also known as table of
confusion. It displays the number of correct and incorrect predictions made by the model compared with the
actual classifications in the test data. The confusion matrix lists the correct classification against the predicted
classification for each class. The number of correct predictions for each class falls along the diagonal of the
matrix. All other numbers are the number of errors for a particular type of misclassification error.

Table B: Overall performance confusion matrix
B Confusion (plotconfusion) e[| (S
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In Table B, we can see that when we consider overall data set than the accuracy reaches to 96.7% which is a
very good amount. The rate of misclassification is less when compared to other phases. In this as we can see
classl is O times misclassified class 2 and class 3, class 2 was 0 times misclassified as class 1 and class 3 by
0.0%, class 3 was 1.7% misclassified as class 1 and class 2, and correctly classified as class 3.In Table we can
see that the green boxes represent the final accuracy for each class as each class was correctly trained. Finally
overall accuracy is shown in blue box which shows that each class classification was correctly learned by the
arrhythmia classifier with zero mean square error and within stipulated parameters related to LM algorithm and
gives 96.7 % results.

B. MEAN SQUARE ERROR
The process of training a neural network involves tuning the values of the weights and biases of the

network to optimize network performance, as defined by the network performance function net.performFcn.
Mean Squared Error is the average squared difference between outputs and targets. Lower values of (MSE)
indicate better performance of the network and zero means no error.

1 N 5 1 N 5
MSE =— E )2 =— E t: —a;
N i=1(el) N i=1( i~ a)
where, t —target ,

a - actual output
e — Error
N-Number of exemplars.
The performance graph is shown in Fig 14.
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Fig.14: Performance Graph

The objective of Neural Network is to run simulation until it reaches minimum possible mean square
error. From performance chart we can see that by simulating the conditions in each epoch we can see that there
is not much variation in mean square error. It is more or less steady graph but as the epoch increases in each
phase shown by red, green and blue lines the value reaches to best validation value of 0.02 which is very close
to zero in ideal situation. This graph also shows that by just having 10 hidden layers of Neural Network we
reached the point close to zero which shows that NN classifier was highly effective in knowing the nature of
data set and knowing the causal association between different features like P peak, R peak, RR interval etc.

C. ERROR HISTOGRAM
Histograms are used to plot density of data, and often for density estimation: estimating the probability
density function of the underlying variable. The total area of a histogram used for probability density is always
normalized to 1. If the length of the intervals on the x-axis is all 1, then a histogram is identical to a relative
frequency plot. There is no "best" number of bins, and different bin sizes can reveal different features of the
data.
Error Histogram (ploterrhist) || | .
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Fig.15 Error histogram

IV. CONCLUSION AND FUTURE SCOPE

A non-invasive system to localize the eyes and monitor fatigue is developed. Information about the
degree of eye closure is obtained through various self-developed image processing algorithms. During the
monitoring, the system is able to decide if the eyes are opened, drowsy or closed. When the eyes are drowsy or
closed, a warning signal is issued. Neural network provides a completely different, unorthodox way to approach
a control problem, this technology is not difficult to apply and the results are usually quite surprising and
pleasing.

For future scope we suggest that that one can work on more features that can include the change is
size and shape of iris when the person is drunk or when there is glossy appearance to eyes or must work on the
concept of Horizontal Gaze Nystagmus for better accuracy using other machine algorithm like SVM.
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A NOVEL METHOD FOR DETECTING DROWSINESS IN REAL TIME
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