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Abstract : An analytic function f is quasi-subordinate to an analytic function g, in the open unit disk if there
exist analytic functions ® and w, with ‘(p‘ <1,
w(0) = 0 and |w(z)| < 1 such that f(z) = @(2)g(W(2)) . Certain subclasses of analytic univalent functions
associated with guasi-subordination are defined and the bounds for the Fekete-Szegd Coefficient functional
‘a3 - pag‘ for functions belonging to these subclasses are derived.
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I.  Introduction
Let A be the class of analytic function f in the open unit D = {z : |z|] < 1} normalized by f(0) = 0 and

f'(0) =1 of the form f(z) =z + z a,z" . For two analytic functions f and g, the function f is subordinate to
n=2
g, written as follows:

=<9 @
if there exists an analytic function w, with w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)). In particular, if the
function g is univalent in D, then f(z) < g(2) is equivalent to f(0) = g(0) and f(D) — g(D). For brief survey on
the concept of subordination, see [1].

Ma and Minda [2] introduced the following class

S'(4) = {f cA: ZI(S) < ¢(z)} , (12)

where ¢ is an analytic function with positive real part in D, ¢(D) is symmetric with respect to the real axis and
starlike with respect to ¢(0) = 1 and ¢'(0) > 0. A function f e S'(¢) is called Ma-Minda starlike (with respect
zf"(2)
f'(2)

include several well-known subclasses of starlike and convex functions as special case.

to ¢). The class C (¢) is the class of functions f € A for which 1+ < ¢(2) . The class S'(#) and C(¢)

For two analytic functions f and g, the function f is quasi-subordinate to g, written as follows:
@ <, 90 (1.3)
if there exist analytic functions ¢ and w, with ‘9(2)‘ <1, w() = 0 and |w(z)] < 1 such that
f(2) = p(2)g(W(2)) . Observe that (2) =1, then f(z) = g(w(2)), so that f(z) < g(z) in D. Also notice that if
w(z) =z, then f(2) = p(2)9(2) and it is said that f is majorized by g and written by f(z) << g(z) in D. Hence it

is obvious that quasi-subordination is a generalization of subordination as well as majorization.

Throughout this paper it is assumed that ¢ is analytic in D with #(0) = 1. Motivated by [2,3,28], we
define the following classes.
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Definition 1.1. Let the class Nq(t, ¢) consists of functions f € A satisfying the quasi-subordination
az’f"(2) + zf'(2)

f(2)

Example 1.1. The function f : D — C defined by the following
azzm+z@—1:z(¢(z) -1) (1.5)
f(2) f(2)

-1<, 42 -1 (1.4)

belongs to the class Nq(a, ¢).

Definition 1.2. Let the class Mq(a, A, ¢), (o 2 0) consist of functions f € A satisfying the quasi-subordination

, f’(Z) [@ja N 7\l|:1+ Zf”(z) _ Zf’(Z) n a(f’(z) _1j:| -1 < ¢(Z)—1 (1.6)

f(z)\ z f(2) f(2) f(2)

Example 1.2. The function f : D — C defined by the following
f'(2)(f(2)\" zf"(z) zf'(2) t'(2) 3 B
Y4 ﬁ [T) + }\.|:1+ f(z) — f(z) + (l( f(z) —1j:| —1 = Z(¢(Z) 1) (17)

belongs to the class My(a., A, ¢).

It is well known (see [10]) that the n-th coefficient of a univalent function f € A is bounded by n. The
bounds for coefficient give information about various geometric properties of the function. In this paper, we
obtain coefficient estimates for the functions in the above defined classes.

Let Q be the class of analytic functions w, normalized by w(0) = 0 and satisfying the condition |w(z)| <
1. We need the following lemma to prove our results.

Lemma 1.1. (see [26]) If w € Q, then for any complex humber t
‘wz - twf‘ < max{1 [t} (1.8)
The result is sharp for the functions w(z) = z% or w(z) = z.

2. Main Results
Throughout the paper, f(z) =z + 8, 2 + a3 2° + -, 2) =1+ By 2+ B, 22 + B3 Z° + -, ¢(2) = Co + C; 2
+Cp,z2+Cy2%+--,B; e Rand B; > 0.

Theorem 2.1. If f € A belongs to Ny(a., ¢), o > 0, then

< B , |a3|£L 1+ max-1, B,_,
1+ 2a 2(1+3a) 1+ 2a

and for any complex number p,

‘a —uaz‘gi 1+ max41, B, }
7T 2(1 4 30) 1+ 20

B,

B } 2.1)
}] 2.2)

Proof. If f € Ng(a, ¢), then there exist analytic functions ¢ and w, with ‘Q‘ <1, w(0) = 0 and |w(z)| < 1 such
that

_2p(l+3a)|+ B,
(1+20) | |B,
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az*f"(2) + zf'(2)

—1=9(2)(¢(W(2) -1) (2.3)
f(2)
Since
21 i
oz’f (:()Z; 2@ a1+ 20)2 + 2a,(1+30) — a2(L+ 20))2% +--- 2.4)
W) —1=B,w,z+ ([B,wW, + B,w>)z* +--.

P(2)Pp(w(2))-1) =B,Cw,z+(BCw, +Cy (Bw, + B,w;)z* +... (2.5)
it follows from (2.3) that

a, =M, a, 1 B,C,w, +B,C,| w, + _BC, 1B w2 (2.6)

1+2a 2(1+ 3a) (1+20) |B,

Since ¢(2) is analytic and bounded in D, we have [27, page 172]

.| <1-[c,|" <1 (n>0) 2.7)
By using this fact and the well known inequality, |wy| < 1, we get

B
< = 2.8

| 2| 1+ 2a) (28)

Further,
a, —paj __ B,C,w, +B,C,|w, + Bl—c"+&—&+3(§)8p0 w? (2.9)
2(1+3a) 1+20) B, (1+20)
Then
‘as _Hag‘ < = [BICW, [ +|B,Co| W, — M B,C, - B __5, w; || ¢ (210)
2(1+ 3a) (1+ 20) (1+20) B,

Again applying |C,| < 1 and |wq| < 1, we have
‘as—uaﬁ‘si 1+w, —| — 1 —2“(1+3(;) BICO—i %
2(1+3a) (1+20) (1+2a) B,
(2.11)

Applying Lemma 1.1 to

w, [ L (120430 )0 0 By (2.12)
(1+2a) (1+2a) B,
yields
2(1+30) 1+20)  (1+20) B,
(2.13)
Observe that
(1+2a) (1+2a) B, (1+20) 5,

and hence we can conclude that
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bl B ey B 2O B
For u =0, the above will reduce to the estimate of |as|. i
Theorem 2.2. If f € A satisfies

“Zq”@)+ZF@)—1<<¢Q)—1 (2.16)

f2)

then the following inequalities hold:
B B
la,| < —2—, |ag|< 1 +—1
1+ 2a 2(1+3a) 1+ 2a

and for any complex number p,

B,
Bl

(2.17)

L 1

Bl

X 1 2u(1+30)
2(1+3a) 1+ 2a

(1+ 20)

2
la, —paj| <

LB (2.18)
B, '

Proof. The result follows by taking w(z) = z in the proof of Theorem 2.1. ]
Theorem 2.3. Leta > 0. Iff € A belongs to My(a., A, ¢) then

Bl
(L+o)1+A)’

|%g———5———P+mu%, B A=+ 65
2+ a)(1+21) 1+ a)2(L+1)? | 2

[a,| <

—2

)

1

+

and

‘as—uag‘S—l 1+ maxi1, E’l -
(2+a)(1+210) (1+a) (1+A)
B,

5 H (2.19)

1

XFLQ?iQ+M%ﬂ%MQ+®ﬂ+%f%

Proof. If f € Mq(a,, 2, ¢), for & > 0 then there are analytic functions ¢ and w, with ‘Q(Z)‘ <1, w(0) = 0 and
|w(z)| < 1 such that
zf'(2) f(z)ja zf"(z2) zf'(2) f'(2)
S A1 — -1]||-1= -1 .
P21 ), 020, [T PDEWD)I1) @20

A computation shows that

2f'(2) (@ja =1+a,(1+ow)z+(2+w) 2—22 [23; + (¢ —1)a;]

f(z) \ z
7{1+ fo”((zz)) — ZI('S) + a(ff,((zz)) —lﬂ =Aa,z+2%(4a, —3a3) +a(a,z+2°(2a, —a3)] (2.21)

Hence from (2.18), we have

zf'(2) (@j“ ol 2f"(2) zf'(2) ry f'(2) nie
f(z) \ z f'(z2) f(2) f(2)
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=a,(1+a)(1+A)z+ z{ag(2+ o) (14 20+ ag(w -M3+ a)ﬂ o (222)
It then follows from relation (2.17) and (2.19) that
a. = Blcowl
2 Ao+
1
Ay =" ——
2+a)1+20)

+ co{B2 +— BG ((1_ LICALNY 3))wf} (2.23)

{ Blclwl + BICOWZ

(1+a)?(1+1)° 2
We can then conclude the proof by proceeding similarly as previous theorem. o

Theorem 2.4. If f € A satisfies

m(@j 14 @ _A@) 2@ )1 piz)-1 (2.24)
f(z) \ z f(2) f(2) f(2)
then the following inequalities hold:
o=
L+ o)(1+2)
la,| < B, 1+ I231 - (-0t +Mo+3)| + B, (2.25)
Q+a)(1+20) |7 (1+0)?(1+1)?| 2 B,
and for any complex number p,
B B
a, —pai< L 1+ L
s - 2+ 0)(1r 2x)( (L+ ) (L+ A)?
‘WH(% o) — (2 + o) (1+ 20)| + %J (2.26)
1
Proof. The result follows by taking w(z) = z in the proof of Theorem 2.3. m]
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