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Abstract :  An analytic function f is quasi-subordinate to an analytic function g, in the open unit disk if there 

exist analytic functions   and w, with 1,φ    

w(0) = 0 and |w(z)| < 1 such that  .(z)g(w(z))f(z)    Certain subclasses of analytic univalent functions 

associated with quasi-subordination are defined and the bounds for the Fekete-Szegö Coefficient functional 
2

23 aμa   for functions belonging to these subclasses are derived. 
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I. Introduction 
Let A be the class of analytic function f in the open unit D = {z : |z| < 1} normalized by f(0) = 0 and 

1(0)f   of the form 





2n

n

nzazf(z) .  For two analytic functions f and g, the function f is subordinate to 

g, written as follows: 

g(z)f(z)    (1.1) 

if there exists an analytic function w, with w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)).  In particular, if the 

function g is univalent in D, then g(z)f(z)  is equivalent to f(0) = g(0) and f(D)  g(D). For brief survey on 

the concept of subordination, see [1]. 

 

Ma and Minda [2] introduced the following class 







 
 (z)

f(z)

(z)fz
:Af)(S*   ,               (1.2) 

where  is an analytic function with positive real part in D, (D) is symmetric with respect to the real axis and 

starlike with respect to (0) = 1 and 0)0(  .  A function f  S
*
() is called Ma-Minda starlike (with respect 

to  ).  The class C () is the class of functions f  A for which (z)
(z)f

(z)fz
1 




 .  The class S

*
() and C() 

include several well-known subclasses of starlike and convex functions as special case. 

 

For two analytic functions f and g, the function f is quasi-subordinate to g, written as follows: 

g(z)f(z) q             (1.3) 

if there exist analytic functions   and w, with 1,)(φ z  w(0) = 0 and |w(z)| < 1 such that 

.(z)g(w(z))f(z)    Observe that 1(z)  , then f(z) = g(w(z)), so that f(z)   g(z) in D.  Also notice that if 

w(z) = z, then (z)g(z)f(z)   and it is said that f is majorized by g and written by f(z) << g(z) in D.  Hence it 

is obvious that quasi-subordination is a generalization of subordination as well as majorization. 

 

Throughout this paper it is assumed that  is analytic in D with (0) = 1.  Motivated by [2,3,28], we 

define the following classes. 
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Definition 1.1. Let the class Nq(, ) consists of functions f  A satisfying the quasi-subordination 

1(z)1
f(z)

(z)fz(z)fzα
q

2




            (1.4) 

 

Example 1.1. The function f  : D  C defined by the following 

1)(z)z(1
f(z)

(z)f

f(z)

(z)f
zα 2 





z                      (1.5) 

belongs to the class Nq(, ). 

 

Definition 1.2. Let the class Mq(, , ), (  0) consist of functions f  A satisfying the quasi-subordination 

 1(z)11
f(z)

(z)f
α

f(z)

(z)fz

f(z)

(z)fz
1λ

z

f(z)

f(z)

(z)f
z q

α



































            (1.6) 

 

Example 1.2. The function f : D  C defined by the following 

1)(z)z(11
f(z)

(z)f
α

f(z)

(z)fz

f(z)

(z)fz
1λ

z

f(z)

f(z)

(z)f
z

α



































   (1.7) 

belongs to the class Mq(, , ). 

 

It is well known (see [10]) that the n-th coefficient of a univalent function f  A is bounded by n.  The 

bounds for coefficient give information about various geometric properties of the function.  In this paper, we 

obtain coefficient estimates for the functions in the above defined classes. 

 

Let  be the class of analytic functions w, normalized by w(0) = 0 and satisfying the condition |w(z)| < 

1. We need the following lemma to prove our results. 

 

Lemma 1.1. (see [26]) If w  , then for any complex number t 

 }tmax{1,tww 2

12                (1.8) 

The result is sharp for the functions w(z) = z
2
 or w(z) = z. 

 

2. Main Results 

Throughout the paper, f(z) = z + a2 z
2
 + a3 z

3
 + , (z) = 1 + B1 z + B2 z

2
 + B3 z

3
 + , )(z = C0 + C1 z 

+ C2 z
2
 + C3 z

3
 + , B1  R and B1 > 0. 

 

Theorem 2.1. If f  A belongs to Nq(, ),   0, then 
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211
3

1
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B

B

2α1

B
1,max1

)3α2(1

B
a,

2α1

B
a            (2.1) 

and for any complex number , 

 


































1

2112

23
B

B

)2α(1

)3α(12μ
1

2α1

B
1,max1

)3α2(1

B
aμa            (2.2) 

 

Proof. If f  Nq(, ), then there exist analytic functions   and w, with 1 , w(0) = 0 and |w(z)| < 1 such 

that 
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 1)(w(z)))((1
f(z)

(z)fz(z)fzα 2




 z            (2.3) 

Since 

 
 22

232

2

))z2α(1a)3α(1(2a)z2α(1a1
f(z)

(z)fz(z)fzα
           (2.4) 

 22

122111 )zwBw(BzwB1(w(z))  

  22

12210111101 )zwBw(BCwC(BzwCB1)(w(z))(z)(            (2.5) 

it follows from (2.3) that 

 



















































 2

1

1

201
2011113

101
2 w

B

B

)2α(1

CB
wCBwCB

)3α2(1

1
a,

2α1

wCB
a         (2.6) 

Since (z)  is analytic and bounded in D, we have [27, page 172] 

 0)(n1c1c
2

0n                           (2.7) 

By using this fact and the well known inequality, |w1|  1, we get 

 
)2α(1

B
a 1

2


               (2.8) 

Further, 
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1
aμa      (2.9) 

Then 
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Again applying |Cn|  1 and |w1|  1, we have 
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(2.11) 

Applying Lemma 1.1 to 
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yields 
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(2.13) 

Observe that 
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          (2.14) 

and  hence we can conclude that 
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B
aμa          (2.15) 

For  = 0, the above will reduce to the estimate of |a3|.          □ 

 

Theorem 2.2. If  f  A satisfies  

 1(z)1
f(z)

(z)fz(z)fzα 2




            (2.16) 

then the following inequalities hold: 
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and for any complex number , 
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Proof.  The result follows by taking w(z) = z in the proof of Theorem 2.1.        □ 

 

Theorem 2.3. Let   0.  If f  A belongs to Mq(, , ) then 
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Proof. If f  Mq(, , ), for   0 then there are analytic functions   and w, with 1(z)  , w(0) = 0 and 

|w(z)| < 1 such that 
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A computation shows that 
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Hence from (2.18), we have 
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It then follows from  relation (2.17) and (2.19) that 
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We can then conclude the proof by proceeding similarly as previous theorem.       □ 

 

Theorem 2.4. If f  A satisfies 
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then the following inequalities hold: 
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and for any complex number , 
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Proof. The result follows by taking  w(z) = z in the proof of Theorem 2.3.        □ 
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