Generalized Pre-Closed Set in Topological Space

C.DillyRani

Assistant Professor Department of Mathematics

Abstract

In this paper was study a generalized pre-closed sets in a topolog	ical space. We will provide the relationship		
between generalized closed sets and generalized pre-closed sets.	Furthers we discuss sg-submaximal space,		
disconnected space by using various kinds of generalized closed sets. Keywords: Generalized closed set, Tgs-space, submaximal, extremely disconnected, Generalized pre-closed sets.			
		Date of Submission: 08-12-2021	Date of acceptance: 23-12-2021

Introduction

In 1970, N.Levine [13] initiated the study of so-called generalized closed sets. By definition, a subset A of X is said to be pre-closed if $cl(int A)\subseteq A$, the pre-closure of A is denoted by PclA, is the smallest set X containing A. Complement of pre-closet set are called pre-open. By definition, a subset A of a topological space X is $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is open. Moreover A is called generalized open or g-open if X/A is g is closed. In [17] Makietal introduce the concept of pg-closed set and gp-closed sets in analogous manner.

Definition 1

Let X be a topological space subset A of X is called

1) Pre-generalized closed (briefly, pg-closed) [17], if $PclA\subseteq U$, whenever $A\subseteq U$ and is pre-open.

2) Generalized pre-closed (briefly,gp-closed) [17], if $PclA \subseteq U$, whenever $A \subseteq U$ and U is open.

I.

3) Semi-generalized closed (briefly, sg-closed) [2], if $SclA \subseteq U$ whenever $A \subseteq U$ and U is semi-open.

4) Generalized semi-closed (briefly, gs-closed) [2], if $SclA\subseteq U$ whenever $A\subseteq U$ and U is open.

5) Generalized α -closed (briefly, $g\alpha$ -closed) [15], if α -clA \subseteq U whenever A \subseteq U and U is α -open or equivalently, if A is g-closed w.r.t α (X).

6) α -generalized closed (briefly, α g-closed) [14], if A \subseteq U and U is open.

7) Generalized semi-preclosed (briefly, gs-closed) [6], if SPclA \subseteq U whenever A \subseteq U and U is open.

By definition (1) A space X has been called pre $T_{1/2}$ – space [17] if every pg-closed sets of X is pre-closed iff every singleton set of X is either pre-closed set or pre-open. Every pg-closed set is pre-closed or every space is pre $T_{1/2}$. However in any topological space, a singleton is either open or pre-closed.

So, let us recall some basic concept is A subset A of a topological space X is called α -open (resp. Semi-open, semi-preopen, if A⊆int (cl(intA)) (resp), A⊆cl(intA). The α -closed (resp, semi-closed, semi-preclosed) if X/A is α -open (resp, semi-open, semi-preopen) or equivalently if cl(int(clA)⊆A(resp, int(clA)⊆A, the α -closure (resp, semi-closure, semi-preclosure of A⊆X is the smallest α -closed (resp, semi-closed, semi-preclosed) set contain in A. it is well-known that α -clA=AUcl(int(cl(A)))SclA=AU int(clA) and SPclA=AUint(cl(int(A))).

In [7] Dontchev summarized the fundamental relationship between various type of generalized closed sets in following diagram.

Converse of some implications in the above diagram. Donrchev [7] two questions asking for the class of space in which every semi-preclosed subset is sg-closed, and for the class of space in which every pre-closed subset is $g\alpha$ -closed. These two questions have been considered and answered by Cao, Ganster and Reilly in [5]. Other possible converse of implications were investigated in [6].

II. Definition

 T_{gs} -spaces and Pre-closed sets (generalized) It is obvious that in any topological space X, every Sgclosed subset of X is gs-closed. We start with establishing relation between various generalized pre-closed set. In [16] the class of T_{gs} -space was introduced where a space X is called T_{gs} if every gs-closed subset of X is sgclosed. The following result T_{gs} -space has been obtained in [5] and [6].

Lemma 1

For a space X the following are equivalent.

- 1) X is a T_{gs} -Space
- 2) Every generalized Semi-Preclosed subset of X is semi-preclosed (ie) X is Semi-Pre $T_{1/2}$ [6].

3) Every singleton is either preopen or closed [5].

4) Every αg -closed subset of X is $g\alpha$ -closed [6].

In our next result we offer additional characterization of T_{gs} -space thereby answering several possible questions in Diag [1].

Corollary 1.1

Every $T_{1/2}$ space is T_{gs}

A space X is called Semi-T₁[19] if each singleton is semi-closed, it is called semi-T_{1/2} [3] if every singleton is either semi-closed or semi-open. Let S(X) be the semi-regulation of a space X. The closure of a subset A of X w.r.t S(X) will be denoted by δ -clA. A subset A of X is called δ -generalized closed if δ -clA \subseteq U hen A \subseteq U and U is open in X.

Theorem 2.1

For any space X is

1) Every gsp-closed subset of X is gp-closed

2) Every semi-pre-closed subset of X is gp-closed

3) The space X is extremely disconnected

Proof : $1 \rightarrow 2$ is obvious. Therefore we have to show that $2 \rightarrow 3$ and $3 \rightarrow 1$.

1) $2 \rightarrow 3$. Let A be regular open subset of X. then A is semi-preclosed. By hypothesis A is gp-closed and so $PclA \subseteq A \rightarrow A=cl(int A)$. Therefore A is closed and hence X is extremely disconnected.

2) $3 \rightarrow 1$. Let A be a gsp-closed subset of X, and let U \subseteq X be open A \subseteq U. If B=SPcIA, then by assumption, A \subseteq B \subseteq U. Since B is semi-preclosed. By theorem [5] we have that B is pre-closed. We have PcIA \subseteq B \subseteq U (ie) A is gp-closed.

Corollary 2.1

For a space X the following are equivalent

- 1) Every gsp-closed subset of X is pre-closed
- 2) X is T_{gs} and extremely disconnected

III. Dontchev's questions

In recent paper [7] Dontchev posed the following two open question concerning generalized closed sets. **Question 3.1**

1) Every semi-preclosed t is sg-closed.

2) Every pre-closed set is $g\alpha$ -closed.

In order to answer these question we need some preparation. Let S be a subset of a space X. A resolution of S is a pair $\langle E_1, E_2 \rangle$ of disjoint dense subset of S. The subset is said to be resolvable if it possesses a resolution, otherwise S is called irresolvable. In addition, S is called strongly, S is called strongly irresolvable, if every open subspace of S is irresolvable, observe that of $\langle E_1, E_2 \rangle$ is a resolution of S then E_1 and E_2 are condense in X, (ie) have empty interior.

Note: Every submaximal space is hereditarily irresolvable. Every space of X has a unique decomposition X=FUG, where F is closed and resolvable and G is open and hereditarily irresolvable [11, 18].

In this paper, the representation X=FUG, where F and G are as in (Note) will be called Hewitt decomposition of X.

Theorem 3.1

For a space X the following are

1) Every θ p-closed set is α g-closed

2) Every pre-closed set is αg-closed

3) Every pre-closed set is $g\alpha$ -closed

Proof: from $1 \rightarrow 2$ and $3 \rightarrow 2$ are obvious and $2 \rightarrow 3$ follows by question(1).

2→1. Let A be gp-closed and A⊆U where U is open. If B=PclA then B⊆U, by B is α g-closed and so α -clA⊆ α -clB⊆U (ie) A is α g-closed.

Corollary 3.1

For any space X the following are

- 1) Every gp-closed set is $g\alpha$ -closed
- 2) X is T_{gs} and every gp-closed set is αg -closed

Proof: $1 \rightarrow 2$ we show that X is T_{gs} . Let $x \in X$ and suppose that $\{x\}$ is now where dense and not closed. Then $X \setminus \{x\}$ is α -open and gp-closed and so α -cl($X \setminus \{x\} \setminus \{x\}$). Thus $X \setminus \{x\}$ is α -closed and $\{x\}$ is open, a contradiction. This prove that X is T_{gs} .

 $2 \rightarrow 1$ follows from Lemma 1.

In concluding this section we provide an example of a space where every gp-closed set is α g-closed but which fails to be T_{es}, hence must have a gp-closed subset which is not g\alpha-closed.

Example 3.2

Let X be the set of natural number with ϕ , X and sets of the form $\{1,2,...n\}$, $n \in N$, as open sets. Since $\{1\}\subseteq U$ for every open set U,X is strongly irresolvable and so, by question (1) every gp-closed set is αg -closed. If m>1, then $cl\{m\} = \{m, m+1,...\}$. Hence $\{m\}$ is nowhere dense but not closed, so X is not T_{gs} .

IV. gp-closed sets and sg-closed sets

In this section we shall consider the relationship between gp-closed sets and sg-closed set (resp, gs-closed set). First observe that every sg-closed set is obviously gs-closed. The relationship between sg-closed sets (gs-closed) sets and other generalized pre-closed set can be illustrated in the diagram.

In general the notions of gp-closed sets and sg-closed (gs-closed) sets are independent each other (ie) X is said to be sg-submaximal [5] if every dense subset is sg-open.

Theorem 4.1

For a space X the following equivalent

- 1) Every gs-closed set of X is gp-closed
- 2) Every sg-closed subset of X is gp-closed
- 3) Every semi-closed subset of X is gp-closed

4) Every space X is extremely disconnected

Proof: $1 \rightarrow 2 \rightarrow 3$ are obvious. We shall show $3 \rightarrow 4 \rightarrow 1$

 $3 \rightarrow 4$. Let A be a regular open subset of X. then A is semi-closed. By assumption, A is gp-closed and A \subseteq A, SoPclA=clA \subseteq A is closed and thus X is extremely disconnected.

4→ 1. Let A be gs-closed with A⊆U are U is open. Then SclA=AU int (clA)⊆U. By int (clA)is closed and so clearly PclA=AUcl(intA)⊆U (ie) A is gp-closed.

Theorem 4.2

For a space X the followings are

- 1) Every gp-closed set is gs-closed
- 2) Every pre-closed set is gs-closed
- 3) X is sg-submaximal
- **Proof**: $1 \rightarrow 2 \rightarrow 3$ is Theorem (4.5 in [7])

2→1. Let A be gp-closed with A⊆U where U is open. If B=PclA then B is preclosed and B⊆U. Therefore B is gs-closed and so SclA⊆SclB⊆U. (ie) A is gs-closed. The proof of the result is similar to that of Theorem 4.2, thus is omitted.

Theorem 4.3

For space X the following are

- 1) Every gsp-closed set of X is gs-closed
- 2) Every semi-preclosed set of X is gs-closed

Preposition 4.1

If every gp-closed subset of a space X is sg-closed, then X is T_{gs}.

Proof : Suppose that $\{x\}$ is nowhere dense but not closed. Then $X \setminus \{x\}$ is semi-open and gp-closed. By assumption, $X\{x\}$ is sg-closed and thus semi-closed. So $\{x\}$ is semi-open, contradicting the fact that $\{x\}$ is nowhere dense.

Corollary 4.1

A space X is gg-submaximal iff every preclosed subset of X is gs-closed

Proof: The necessity is trivial by (Every pre-closed subset of X is sg-closed). For the sufficiency, suppose that every pre-closed subset is gs-closed. Let X=FUG be the Hewitt decomposition of X, and let $\langle E_1, E_2 \rangle$ be a resolution of int F.

We first claim that every open set $V \subseteq int F$ is regular open. $V \subseteq E_1$ is co-dense and contained in V. since co-dense sets are preclosed, by assumption, they are gs-closed. Thus $int(cl(V \subseteq E_1)) \subseteq V$. on the other hand, E_1 is dense in int F, hence we have int $(cl(V \subseteq E_1))=int(clV)$. It follows V=int(clV).

Let x int F and V=int F \cap (X\cl{x}). Suppose that {x} is nowhere dense. Then X\cl{x} is dense and int (clV)=int (cl(int F)) =int F, Our claim int F = V. Hence F \subseteq X\{x}. acontradiction. {x} is pre-open. We have proved that int F \subseteq X₂ (ie) X₁ \subseteq clG. By the theorem X is sg-submaximal.

Remarks 4.1

One way ask whether every sg-submaximal space has to be T_{gs} . This is, however not the case. The space is our example 3.2 is not T_{gs} and has the property that every pre-closed set is ga-closed and thus gs-closed. Hencely theorem 4.2 it is sg-submaximal.

References

- [1]. T.Aho and T.Nileminen, space in which preopen subsets are semi-open, Ricerche Mat, 43(1994), 45-49.
- [2]. S.Arya and T.Nour, characterizations of S-normal space Indian J.PureAppl.Math, 21(1990), 717-719.
- [3]. P.Bhattacharya and B.K.Lahiri, semi-generalized closed sets in topology, Indian J.Math, 29(1981), 375-382.
- [4]. H.Blumberg, New properties of all real function Trans. Amer-math, SOC, 24(1922), 113-128.
- [5]. J.Cao, M-Ganster and L.L.Reilysubmaximalityextremal disconnectedness and generalized closed sets, Houston J.Math (24)(1998), 681-688.
- [6]. J.Dontchev. On generating semi-preopen sets Mem.Fac.Sci.Kochi.Uni.Ser.A., Math 16(1995), 35-48.
- [7]. Dontchev, On some preparation axiom associated with α-topology, Mem.Fac-Sci, kochi. Univ.Ser A, Math 18(1997), 31-35.
- $[8]. J.Cao, M.Ganster and I.L.Reily, On sg-closed sets and g\alpha-closed sets. Mem.Fac.Sci.Kochi.Univ.SerA, Math (20), 1-5.$
- [9]. J.Cao, M.Ganster and I.L.Reily, On generalized closed sets, Topology Appl, Proceedings of the 1998 Gyula Topology Colloquium to appear.
- [10]. J.Donthev and H.maki, on the behavior of gp-closed sets and their generalizations, Mem.Fac.Sci. Kochi.Univ. A, ser, Math, 19 (1998), 57-72.
- [11]. E.Hewitt, A problem of semi-theoretic topology, Duke, J.Math, 10(1943), 309-333.
- [12]. D.Jankovic and I.L.Reily, on semi-separation properties, Indian J.pure Appl. Math, 16(1985), 957,964.
- [13]. N.Levine, generalized closed sets in topological space, Rend, Circ. Mat. Palermo 19(1970), 89-96.
- [14]. H.Maki, R.Devi and K.Balachandran, Generalized α-closed sets in totology, Bull.FukuokaUniv, Ed, part III, 42(1993), 13-21.
- [15]. H.Maki, K.Balachandran, Generalized α-closed sets in topology, poull. Fukuoka Univ. α-generalized closed sets, by Associated topologies, Mem. Fac.Sci. kochi, A, Ser.Math 15(1994), 51-63.

- H.Maki, J.Umehara and T.Noiri, "Every topological space pre-T_{1/2}Mem.Fac.Sci.kochi.univ.ser.A, Math, 17(1996), 33-42. M.Ganster, preopen sets and resolvable spaces, kyungpook Math, J, 27(1987), 135-143. [17]. [18].
- [19]. S.Maheswari and R.Prasad, some new separation axiom, Ann, Soc, Sci, Bruexelles89 (1975), 395-402.

^{[16].} H.Maki, K.Balachandran and R.Devi, Remarks on semi-generalized closed sets and generalized semi-closed sets, kyunpgoo Math J, 36(1996), 155-163.