
International Journal of Research in Engineering and Science (IJRES)

ISSN (Online): 2320-9364, ISSN (Print): 2320-9356
www.ijres.org Volume 10 Issue 5 ǁ 2022 ǁ PP. 21-27

www.ijres.org 21 | Page

Study of improving software testability by Data Mining

Techniques

Amitava Bondyopadhyay

Abstract
Software testing have a very important role in the process of building a high quality software. It is necessary

because programmers, being human , commit mistakes. Sometimes those mistakes have some long lasting effect

in the quality of the software. Hence in this paper a survey is made to see the significance of data mining

techniques for software testing .
Keywords: Cost, Classification, Data mining, Database, Dataset, Testing,Data Mining, Software Testing,

Software Engineering, Test Case, Software Quality .

Date of Submission: 18-04-2022 Date of acceptance: 03-05-2022

I. INTRODUCTION

Automated software testing can increase the depth and scope of tests to help improve software quality.

Lengthy tests that are often avoided during manual testing can be run unattended. They can even be run on

multiple computers with different configurations.

The main purpose of software development process is to develop high-quality software efficiently. In
recent years the demand for software quality has increased quickly. In recent decades the production of large

software projects are challenging , costly and time consuming. In order to minimize cost and enhancing the

overall efficiency of the testing process , measuring software defects at early stage is particularly significant. So

if we estimate at priori the probable faultiness of software , then it could end up giving help on software

development activities planning, controlling and executing. Hence our aim should be to discover a low cost

method that can be achieved from learning from earlier error to prevent future one. Nowadays quite a few data

sets exists which could be mined to find useful facts about defects. From the beginning data mining techniques

are applied in constructing software fault prediction for improving the software quality. So we need to identify

high risk modules (having high number of faults) at the earliest which can be helpful in quality enhancement

effort.

A software defect [16] is an fault, flaw, bug, mistake, breakdown, or fault in a computer program or

system that may make an erroneous outcome, or precludes the software from behaving as wished .Any software
development team for all time want to produce a quality software with least amount of defects. To boost the

software quality, high risk modules from the software development should be take out at the earliest. Software

defects constantly invite cost in terms of time and quality . To identify and correct defects is one of the major

research areas nowadays. It is not possible to eliminate each and every defect in one software but it can be

minimized and their adverse effects can be reduced.

 Software engineering plays with the design and creation of programs for computers and other electronic

devices. In a classic software development style, the work is split into distinct stages with exact activities in

each, with the objective of improving planning and management. Such contrasting development paradigms and

the intricate dependencies that they create increase the complexity of software systems. This slows down

development and maintenance activities, causes faults and defects and eventually leads to an increase in cost of

the software. Organizations often fail to understand how their process impacts the quality of the software that
they produce. This is mainly due to the difficulty innate in discovery and measurement. Although software

metrics have long been the de-facto standard for the assessment of software quality and development processes,

their drawbacks are numerous. The over- reliance on metrics that can be easily obtained and understood, usage

of metrics that seem interesting but remain irrelevant and uninformative and the difficulty in obtaining truly

valuable metrics are but to name a few.

 Data mining is defined as the process of discovering previously unknown and potentially useful

information from data collections. Thus utilizing data mining in software testing with the aim of software

improvement has piqued the interest of researchers worldwide. There are several challenges that emerge in

mining software repositories. The major ones being, dealing with the inherent complexity and sheer volume of

the software engineering data. Data mining concentrates on working with large quantities of data to provide a

pattern. In terms of consumer data it is very useful to lead to attain successful marketing. So sometimes it is

Study of improving software testability by Data Mining Techniques

www.ijres.org 22 | Page

violating the information protection law by proving unknown relationships in data[9]. For example, the software

for pervasive computing based; HVAC control system to control energy consumption needs proper testing, to

provide efficient energy consumption [3]. In this survey, we present an overview of data mining techniques and
how they can be applied in the context of software testing. More specifically, we categorize these techniques

with respect to the software development stages that they assist in the most.

II. STUDY OF IMPROVING SOFTWARE TESTABILITY

Test cases do not have the same significance when used to sense faults in software; therefore, it is more

capable to test the system with the test cases that have the skill to detect the faults. This research proposes a new

framework that combines data mining techniques to prioritize the test cases. It increases fault prediction and

detection using two different techniques, firstly the data mining regression classifier[1] that depends on

software metrics to predict defective modules, and the second one the k-means clustering technique that is used

to choose and prioritize test cases to identify the fault at the beginning. Their approach of test case prioritization

yields good results in comparison with other studies. The authors used the Average Percentage of Faults
Detection APFD metric to evaluate the proposed framework, which results in 19.9% for all system modules and

25.7% for defective ones. The result gives an indication that it is useful to start the testing process with the most

defective modules instead of testing all modules arbitrary .

The high reliability software is not only one of software technique development commanding points,

but also is the software industry development essential foundation, [2] summarizes the data mining to face the

detect of the software credibility test, the appraisal and the technical aspect newest research, elaborated the data

mining technology in the software flaw test application, including flaw test in commonly used data mining

method, data mining system and software testing management system. Introduced specifically in view of the

software flaw's different classification based on the connection rule's software flaw parsing technique's

application, proposed based on the association rule's software detect evaluation method, the purpose of which is

to decrease software defects and to achieve the rapid growth of software dependability.

Software testing activities are usually planned by human experts, while test automation tools are
limited to execution of pre-planned tests only. Evaluation of test outcomes is also associated with a considerable

effort by software testers who may have imperfect knowledge of the requirements specification. Not

surprisingly, this manual approach to software testing results in heavy losses to the world’s economy. As

demonstrated in this chapter, Data Mining algorithms(4) can be efficiently used for automated modeling of

tested systems. Induced Data Mining models can be utilized for recovering system requirements, identifying

equivalence classes in system inputs, designing a minimal set of regression tests, and evaluating the correctness

of software outputs.

The primary goal of software development is to deliver high-quality software efficiently and in the

least amount of time whenever possible. To achieve the preceding goal, developers often want to reuse existing

frameworks or libraries instead of developing similar code artifacts from scratch. The challenging aspect for

developers in reusing the existing frameworks or libraries is to understand the usage patterns and ordering rules
among Application Programming Interfaces exposed by those frameworks or libraries, because many of the

existing frameworks or libraries are not well documented. Incorrect usage of Application Programming

Interfaces may lead to violated Application Programming Interfaces specifications, leading to security and

robustness defects in the software. Furthermore, usage patterns and specifications might change with library

refactoring, requiring changes in the software that reuse the library.

Data mining techniques are applied in building software fault prediction models for improving the

software quality. Early identification of high-risk modules can assist in quality enhancement efforts to modules

that are likely to have a high number of faults. The [5] presents the data mining algorithms and techniques most

commonly used to produce patterns and extract interesting information from software engineering data. The

techniques are organized in seven sections: classification trees, association discovery, clustering, artificial neural

networks, optimized set reduction, Bayesian belief networks, and visual data mining can be used to achieve high

software reliability.
To achieve the goal of creating products for a specific market segment, implementation of Software

Product Line is required to fulfill specific needs of customers by managing a set of common features and

exploiting the variability’s between the products. Testing product-by- product is not feasible in Software

Product Line due to the combinatorial explosion of product number, thus, Test Case Prioritization is needed to

select a few test cases which could yield high number of faults. Among the most promising TCP techniques is

similarity- based TCP technique which consists of similarity distance measure and prioritization algorithm. The

goal of [6] is to propose an enhanced string distance and prioritization algorithm which could reorder the test

cases resulting to higher rate of fault detection. Comparative study has been done between different string

distance measures and prioritization algorithms to select the best techniques for similarity-based test case

prioritization. Identified enhancements have been implemented to both techniques for a better adoption of

Study of improving software testability by Data Mining Techniques

www.ijres.org 23 | Page

prioritizing Software Product Line test cases. Experiment has been done in order to identify the effectiveness of

enhancements done for combination of both techniques. Result shows the effectiveness of the combination

where it achieved highest average fault detection rate, attained fastest execution time for highest number of test
cases and accomplished 41.25% average rate of fault detection. The result proves that the combination of both

techniques improve Software Product Line testing effectiveness compared to other existing techniques.

In today’s software industry, the design of test cases is mostly based on the human expertise, while test

automation tools are limited to execution of pre-planned tests only. Evaluation of test outcomes is also

associated with a considerable effort by human testers who often have imperfect knowledge of the requirements

specification. Not surprisingly, this manual approach to software testing results in heavy losses to the world’s

economy. In [7] authors demonstrated the potential use of data mining algorithms for automated modeling of

tested systems. The data mining models can be utilized for recovering system requirements, designing a minimal

set of regression tests, and evaluating the correctness of software outputs. To study the feasibility of the

proposed approach, they have applied a state-of-the-art data mining algorithm called Info-Fuzzy Network to

execution data of a complex mathematical package. The Info-Fuzzy Network method has shown a clear
capability to identify faults in the tested program.

In today's software industry, the design of test cases is mostly based on human expertise, while test

automation tools are limited to execution of pre-planned tests only. Evaluation of test outcomes is also

associated with a considerable effort by human testers who often have imperfect knowledge of the requirements

specification. Not surprisingly, this manual approach to software testing results in heavy losses to the world's

economy. In [8], they demonstrated the potential use of data mining algorithms for automated modeling of

tested systems. The data mining models can be utilized for recovering system requirements, designing a minimal

set of regression tests, and evaluating the correctness of software outputs. To study the feasibility of the

proposed approach, they have applied a state-of-the-art data mining algorithm called Info-Fuzzy Network to

execution data of a complex mathematical package. The Info-Fuzzy Network method has shown a clear

capability to identify faults in the tested program.

Software engineering activities comprise of several activities to ensure that the quality product will be
achieved at the end. Some of these activities are software testing, inspection, formal verification and software

defect prediction. Many researchers have been developed several models for defect prediction. These models are

based on machine learning techniques and statistical analysis techniques. The main objectives of these models

are to identify the defects before the delivery of the software to the end user. This prediction helps project

managers to effectively utilize the resources for better quality assurance. Sometimes, a single defect can cause

the entire system failure and most of the time they drop the quality of the software system drastically. Early

identification of defects can also help to make a better process plan which can handle the defects effectively and

increase the customer satisfaction level. But the accurate prediction of defects in software is not an easy task

because this is an indirect measure. Therefore, it is important to find suitable and significant measures which are

most relevant for finding the defects in the software system. [10] Presents a feature selection based model to

predict the defects in a given software module. The most relevant features are extracted from all features with
the help of seven feature selection techniques and eight classifiers are used to classify the modules. Six NASA

software engineering defects prediction data sets are used in their work. Several performance parameters are

also calculated for measuring the performance and validation of this work and the results of the experiments

revealed that their proposed model has more capability to predict the software defects.

Software engineering data contains a wealth of information about a project's status, progress, and

evolution. Using well established data mining techniques, practitioners and researchers can explore the potential

of this valuable data in order to better manage their projects and to produce higher quality software systems that

are delivered on time and within budget. [11] Presents the latest research in mining Software Engineering data,

discusses challenges associated with mining Software Engineering data, highlights Software Engineering data

mining success stories, and outlines future research directions. Participants will acquire knowledge and skills

needed to perform research or conduct practice in the field and to integrate data mining techniques in their own

research or practice.
In today’s industry, the design of software tests is mostly based on the testers’ expertise, while test

automation tools are limited to execution of pre-planned tests only. Evaluation of test outputs is also associated

with a considerable effort by human testers who often have imperfect knowledge of the requirements

specification. Not surprisingly approach to software testing results in heavy losses to the world’s economy. The

costs of the so-called catastrophic software failures are even hard to measure. Some of the researchers

demonstrated the potential use of data mining algorithms for automated induction of functional requirements

from execution data. The induced data mining models of tested software can be utilized for recovering missing

and incomplete specifications, designing a minimal set of regression tests, and evaluating the correctness of

software outputs when testing new, potentially flawed releases of the system. To study the feasibility of the

proposed approach, they have applied a novel data mining algorithm called Info-Fuzzy Network to execution

Study of improving software testability by Data Mining Techniques

www.ijres.org 24 | Page

data of a general- purpose code for solving partial differential equations. After being trained on a relatively

small number of randomly generated input-output examples, the model constructed by the Info-Fuzzy Network

algorithm has shown a clear capability to discriminate between correct and faulty versions of the program.
Satisfying the customer requirements is the ultimate goal of producing or developing any product. The

quality of the product is decided on the bases of the level of customer satisfaction. There are different techniques

which have been reported during the survey which enhance the quality of the product through software defect

prediction and by locating the missing software requirements. Some mining techniques were proposed to assess

the individual performance indicators in collaborative environment to reduce errors at individual level. The

basic intention is to produce a product with zero or few defects thereby producing a best product quality wise.

We can make analysis of survey the techniques like Genetic algorithm, artificial neural network, classification

and clustering techniques and decision tree .. After analysis it has been found that these techniques contributed

much to the improvement and enhancement of the quality of the product.

The increased availability of data created as part of the software development process allows applying

novel analysis techniques on the data and using the results to guide the process’s optimization. Some researchers
described various data sources and discuss the principles and techniques of data mining as applied on software

engineering data. Data that can be mined is generated by most parts of the development process: requirements

elicitation, development analysis, testing, debugging, and maintenance. Based on this classification they survey

the mining approaches that have been used and categorize them according to the corresponding parts of the

development process and the task they assist. Thus the survey provides researchers with a concise overview of

data mining techniques applied to software engineering data, and aids practitioners on the selection of

appropriate data mining techniques for their work.

A typical software development process has several stages; each with its own significance and

dependency on the other. Each stage is often complex and generates a wide variety of data. Using data mining

techniques, it can uncover hidden patterns from this data, measure the impact of each stage on the other and

gather useful information to improve the software development process. The insights gained from the extracted

knowledge patterns can help software engineers to predict, plan and comprehend the various intricacies of the
project, allowing them to optimize future software development activities. As every stage in the development

process entails a certain outcome or goal, it becomes crucial to select the best data mining techniques to achieve

these goals efficiently. Some surveyed the available data mining techniques and proposed the most appropriate

techniques for each stage of the development process. They also discuss how data mining improves the software

development process in terms of time, cost, resources, reliability and maintainability.

In a Case-Based Reasoning Data mining can be used as efficient methods for effort estimation and

automated testing has been investigated respectively If our software has many outstanding features but does not

work properly due to lack of testing, your software is subjected to fail, so in order to test them properly, the test

results could help the developer to classify them in different categories such as different process models and

different types of errors in each developing life cycle phase, then by having these classified results and using

data mining methods and Case-Based Reasoning, it would be easy to have the new software’s properties and
estimate the future test cases in order to reduce the cost of testing phase and eventually the developing cost in

similar upcoming projects. To make it much more efficient, a case with different types of attributes is designed

for each software which shows the behavior of it, then they evaluate any upcoming software by fining the most

similar case for it from the stored cases and do the performed test cases for it. By estimating the proper set of

domains for each attributes, they could increase the efficiency.

At present, with the scale expansion of computer software, only rely on manual for software

development, maintenance and other work is more difficult. Data mining technology can accelerate the speed of

software development, and can in many databases find valuable data.[17] Makes in-depth studies on software

engineering data mining technology, and introduces the influence of data mining technology. Software

engineering data mining technology is to use existing technology or new data mining algorithm in massive

databases, and is the process of collecting valuable information for software developers through a series of

steps, such as selection, analysis, formulation. It is a process of clear grasp and management of software
development. Software developers must collect the required data, which is the practice of software development

industry. To complete the work, they extracted the required data information from large amounts of data, and

the process of collecting and selecting information is the process of data mining. At present, data mining

technology has been widely used in software testing. [17] Introduces the relevant knowledge of data mining

technique and its application in software testing.

III. IMPROVING TESTABILITY: AN ANALYSIS

Testing is a critical stage of the software development lifecycle. The aim is to release bug-free,

software that won’t cost you a fortune in backend running costs. Clearly, making this process more efficient and

effective will save you time and effort, and in the long run, will improve your profitability. This is one of the

Study of improving software testability by Data Mining Techniques

www.ijres.org 25 | Page

main drivers behind the switch to test automation. However, one important factor is often overlooked – software

testability. In this blog, we will look at what software testability is and offer some tips and advice on how to

improve the testability of your software.
Automated testing involves getting a computer to interact with your UI and replicate the actions of a

real user. Things like selecting items on the screen, clicking on buttons, entering data in form fields, etc. The

majority of test automation tools use some form of scripting to achieve this. These scripts first select an element

in your UI, then perform some action on that element. (NB, in well-designed tests, this action may simply be

verifying the correct element is in the correct place on screen).

Most test automation systems are based on a scripting language, such as JavaScript. JavaScript can

select elements on the page in several ways. These include (in order of complexity) CSS selectors (e.g. Tag, ID,

Class, attribute), DOM-specific (e.g. getElementById, getElementByName), and XPath. The problem is, with

the possible exception of XPath, all these selectors can be ambiguous. This directly leads to the biggest bane of

every test automation engineer’s life: test maintenance. Each time you make a change to your UI, it risks

changing the selectors. Even simple CSS changes can have an effect. As a result, every change will break some
or all your tests, requiring your test scripts to be rewritten.

A related issue is the order in which selectors appear on the page. Scripting languages are relatively

dumb. So, the first element that matches the selector will be the element it chooses. This can cause problems

when your dev team decides to clean up their codebase. And again, this triggers the need for additional test

maintenance and reduces software testability.

Challenges for manual testing

Manual testers have one key advantage over test automation engineers – they are human and therefore

intelligent. This means that things, like restyling your site, moving elements on the page and even changing

button names, shouldn’t worry them. However, they still face some real issues. For a start, they will generally be

performing tests in a static location. Many sites and applications rely on geolocation information, which is hard

to test. Another key problem is application state. A real-life user quickly builds up a complex application state.
Being able to replicate this with manual tests can be time-consuming and hard. Repeating it test-after-test is

even harder.

The test data problem

One problem is common to both manual and automatic testing – test data. If you are going to test your

system properly, you need suitable test data. You might just use a copy of your real customer data. However,

this has problems. If your system handles sensitive data (e.g. HIPAA or banking data), you can’t just allow

anyone to have access to this data. Equally, if you have a new system you may not have any test data yet. In

both these cases, you will end up having to create fake test data. That might sound easy enough, but it comes

with a number of problems which we will explore later.

Improving testability

Below the system level in the testing hierarchy, improving software testability is largely about

improving your code. This will involve things like adding explicit unit tests, utilizing tools that measure test

coverage, code reviews, and the use of consistent code style. At the integration test stage, it involves

understanding how each subsystem should function and may involve creating code to test for this. Where things

get interesting is at the system testing stage.

Making your UI more testable

So, let’s look at what can you do to make your UI more testable. The following list is by no means exhaustive

but shows you some of the ways you can improve matters.

Better and consistent element naming

Your developers can improve software testability if they simply make sure every element in the UI is correctly,
predictably and uniquely named. This is a challenge in large projects where you may have big teams of frontend

engineers. It is also particularly challenging when developing UIs for different platforms.

Adding tools for testers

Manual testing will be much simpler if you build in tools specifically for this. For instance, you might make it

simple for the application to adjust its apparent location. You might also create tools that make it easy to place

the application into a known state.

 Apart from that all the studies highlighted the importance of the test cases and how to increase more

test case using data mining techniques combined with software testing. [2] can be made . This study also

explored how data mining techniques are used to produce defect free software product. [4] It vows for the

https://www.w3schools.com/cssref/css_selectors.asp
https://www.hhs.gov/hipaa/index.html
https://afourtech.com/how-to-measure-test-coverage/
https://afourtech.com/how-to-measure-test-coverage/
https://en.wikipedia.org/wiki/Code_review

Study of improving software testability by Data Mining Techniques

www.ijres.org 26 | Page

importance of data mining and emphasizes on the automated modeling of testing systems [5] . Various

discussion has been made on some data mining techniques that can be used to explore software engineering

data to achieve high software reliability. We also find the goal of is to propose enhanced string distance and
prioritization algorithm is to reorder the test cases to improve the efficiency.

 The study also proposed state of the art data mining algorithm called Info-Fuzzy Network to execute

complex data. Here they introduced an emerging methodology for automated regression testing of data driven

software systems.

IV. CASE STUDY IN OPEN SOURCE SOFTWARE

The major goal of software development is to deliver high-quality software efficiently. There has been

a huge growth in the demand for software quality during recent ages. In recent decades the production of large

software projects are very large and is costly and time consuming. As a consequence, issues are related to

testing, becoming increasingly critical. The ability to measure software defect can be extremely important for

minimizing cost and improving the overall effectiveness of the testing process. The possibility of early
estimating the probable faultiness of software could help on planning, controlling and executing software

development activities. A low cost method for defect analysis is learning from past mistakes to prevent future

ones. Today, there exist several data sets that could be mined in order to discover useful knowledge regarding

defects.

Open source/free software (OSS/FS) is the software where users have the freedom to run, copy,

distribute, study, modify and improve the software, and the source code is freely available. Briefly, OSS/FS

systems are programs whose licenses give users the freedom to run the program for any purpose, to study and

modify the program, and to redistribute copies of either the original or modified program. The only thing that

has to be taken care is that there should be no degradation of software in terms of productivity and quality. Open

Source Software (OSS) project managers often need to observe project key indicators, e.g., how much efforts

are needed to finish certain tasks, to assess and improve project and product quality, e.g., by analyzing defect

data from OSS project developer activities and with the expansion of software size and complexity, how to
detect defects becomes a challenging problem.

Data mining techniques are applied in building software fault prediction models for improving the

software quality. Early identification of high-risk modules can assist in quality enhancement efforts to modules

that are likely to have a high number of faults. Classification tree models are simple and effective as software

quality prediction models, and timely predictions of defects from such models can be used to achieve high

software reliability.

V. CONCLUSION

Nowadays data mining techniques are extensively used in software testing, and applying data mining

in software testing can significantly increase the efficiency of software system to a certain extent. Data mining

techniques can be used in software testing to produce high quality software. In this paper it is proved that one
can improve software quality through software defect prediction using a variety of data mining techniques.

REFERENCES
[1]. Emad Alsukhni, Ahmad A. Saifan et al, "A New Data Mining-Based Framework to Test Case Prioritization Using Software Defect

Prediction", International Journal of Open Source Software and Processes 8(1):21-41 · January 2017.

[2]. Yanguang Shen, Jie Liu et al., "Research on the Application of Data Mining in Software Testing and Defects Analysis", 2009

Second International Conference on Intelligent Computation Technology and Automation, DOI: 10.1109/ICICTA.2009.384, Print

ISBN: 978-0-7695-3804-4, IEEE.

[3]. A.Kanagaraj, Dr Antony Selvadoss Thanamani, "A Study on Technologies Used in Ubiquitous and Pervasive Computing",

International Journal of Advanced Research in Computer Science, Volume 3, No.3, May-June 2012.

[4]. Last M., "Data Mining for Software Testing", In: Maimon O., Rokach L. (eds) Data Mining and Knowledge Discovery Handbook.

Springer, Boston, MA, 2005.

[5]. Nadhem Sultan Ali, Dr. V.P. Pawar, "The use of data Mining Techniques for Improving Software Reliability", International Journal

of Advanced Research in Computer Science, Volume 4, No. 4, March-April 2013.

[6]. Halim. S., Jawawi, D. N., & Sahak. M., "Similarity distance measure and prioritization algorithm for test case prioritization in

software product line testing", Journal of Information and Communication Technology, 18(1), 57-75, 2018.

[7]. Mark Last, "Using Data Mining For Automated Design of Software Tests", Department of Information Systems Engineering, Ben-

Gurion University of the Negev.

[8]. M. Last, M. Friedman et al., "Using Data Mining For Automated Software Testing", International Journal of Software Engineering

and Knowledge Engineering, Vol. 14, No. 4 (2004) 369-393, World Scientific Publishing Company.

[9]. Dr A.Kanagaraj, S.Sharmila, "Pervasive Computing Based Intelligent Energy Conservation System", Int. J. Advanced Networking

and Applications, Volume: 07 Issue: 03 Pages: 2736-2740 (2015) ISSN: 0975-0290, IJANA.

[10]. Amit Kumar Jakhar and Kumar Rajnish, "Software Fault Prediction with Data Mining Techniques by Using Feature Selection

Based Models", International Journal on Electrical Engineering and Informatics - Volume 10, Number 3, September 2018.

[11]. Tao Xie, Jian Pei et al., "Mining Software Engineering Data", 29th International Conference on Software Engineering (ICSE'07

Companion), IEEE, Print ISBN: 0- 7695-2892-9, 20-26 May 2007, Minneapolis, MN, USA.

http://link.springer.com/search?dc.title=Open+Source&facet-content-type=ReferenceWorkEntry&sortOrder=relevance
http://link.springer.com/search?dc.title=Open+Source&facet-content-type=ReferenceWorkEntry&sortOrder=relevance

Study of improving software testability by Data Mining Techniques

www.ijres.org 27 | Page

[12]. Mark Last, Menahem Friedman et al., "The data mining approach to automated software testing", SIGKDD ’03, August 24-27,

2003, Washington, DC, USA, 2003 ACM 1-58113-737-0/03/0008.

[13]. Mariam Bibi, Rubab Mehboob et al., "Analytical Study of Data Mining Techniques for Software Quality Assurance", International

Journal of Computer and Communication System Engineering (IJCCSE), Vol. 2 (3), 2015, 377-386, ISSN: 2312-7694.

[14]. M. Halkidi, D. Spinellis et al., "Data mining in software engineering", Intelligent Data Analysis 15 (2011) 413–441, DOI

10.3233/IDA20100475, IOS Press.

[15]. Nidhin Thomas, Atharva Joshi et al., "Data Mining Techniques used in Software Engineering: A Survey", International Journal of

Computer Sciences and Engineering, Volume-4, Issue-3, E-ISSN: 2347-2693, 2015, pp.28-34.

[16]. Ali Ilkhani and Golnoosh Abaee, "Extracting Test Cases by Using Data Mining; Reducing the Cost of Testing", International

Journal of Computer Information

