
International Journal of Research in Engineering and Science (IJRES)

ISSN (Online): 2320-9364, ISSN (Print): 2320-9356
www.ijres.org Volume 10 Issue 2 ǁ 2022 ǁ PP. 27-30

www.ijres.org 27 | Page

Automated Emboss Of Mobile (Android) Phishing APPS

via Graphical User Interface- DoS ATTACK

Achu Thomas Philip
1
, Reshma Suku

2
, Dr. Smita C Thomas

3

1 M Tech Student, APJ Abdul Kalam Technological University, Kerala, India
2
 Asst. professor, Mount Zion College of Engineering, Kadammanitta, Kerala, India

3 Professor, Mount Zion College of Engineering, Kadammanitta, Kerala, India

Abstract - -Phishing is a plan of attack to gain personal information for the intention of identity theft, usually by
means of fraudulent E-mail. Attackers use emails, social media to trick victims into providing sensitive

information/data or visiting malicious URL (Uniform Resource Locator) in the attempt to compromise their systems.

Mobile phishing attacks, such as mimic mobile browser pages, masquerade as permissible applications by leveraging

repackaging or clone techniques, have caused varied yet symbolic security concerns. Therefore, detection methods

have been receiving increasing attention. In this paper, we propose a new attacking technique, called GUI-DoS

(Squatting) attack, which can generate phishing apps automatically and effectively on the Android platform. This

method embraces image processing and deep learning algorithms, to enable significant and large-scale attacks. We

detect that a successful phishing attack requires two situations, page confusion and logic deception during attacks

synthesis. Our experimental calculation reveal that existing phishing securities are less effective against such

emergent attacks and may therefore stimulate more efficient detection techniques. To further reveal that our

generated phishing apps can not only bypass existing detection techniques, but also deceive real users.

Key Words: Phishing, Mobile Phishing, DoS (Squatting) Attack.

Date of Submission: 14-02-2022 Date of acceptance: 28-02-2022

I. INTRODUCTION

Phishing is a technique of gathering sensitive information of a target such as username, password etc., by

disguising as a trustworthy entity. In traditional phishing attacks, attackers send SMS (Short Message Service) or

emails containing malicious links to redirect the browser to external phishing web pages or inducing download

activities to install malicious applications on users’ devices [1][7]. According to the FBI, phishing was the most

reported cybercrime in 2020.
Moreover, phishing attacks are not necessarily sent in bulks but can be highly targeted, such as credential

spear phishing [9] and whaling attacks [4].

1.1 MOBILE PHISHING

Mobile device-oriented phishing attack, SMS (Short Message Service) phishing uses text messaging to

convince victims to disclose account credentials or install malware. Phishing attacks depend on more than simply

sending an email to victims and hoping that they click on a malicious link or open a malicious link or attachment.

Mobile phishing is becoming more prevalent and more difficult to spot. Instead, mobile phishing is their new

approach and are targeting services like SMS, Whats App, Facebook, and fraudulent mobile apps. Cybercriminals

are adept at using social engineering techniques to make their content appear authentic.

1.2 Squatting attack
A Squatting attack [10] is a form of denial-of-service (DoS) attack where a program interferes with another

program through the use of shared synchronization objects. There exist several attack derivatives for different

scenarios, such as typo-squatting attack, skill-squatting attack, and voice-squatting attack.

II. LITERATURE SURVEY

Web Phishing: - Gupta et al. [18] summarized that web phishing attacks have two traditional strategies: spoofed

emails and fake websites. Spoofed emails induce users to click links in the email and redirect to a malicious website

from untrusted servers to extract victims’ information. Numerous approaches have been proposed to filter out

phishing emails. Fette et al. [3][4] utilized machine learning to classify the spoofed emails with a high accuracy.

CANTINA [7] proposed a content-based approach to detect phishing websites, based on the TF-IDF information

retrieval algorithm. Pan et al. [5] examined anomalies in web pages (e.g., the discrepancy between a website’s
identity) to detect phishing web pages. Fu et al. [6] and Liu et al. [4][8] used visual similarity comparison to

AUTOMATED EMBOSS OF MOBILE (ANDROID) PHISHING APPS via GRAPHICAL USER ..

www.ijres.org 28 | Page

distinguish phishing web pages. DOMAntiPhish [12] leveraged layout similarity information to distinguish

malicious and benign web pages. Ma et al. [19] trained a predictive classifier based on the web URLs to identify

phishing URLs. However, since attributes in mobile apps are different from those in web pages, these detection
techniques are not applicable to mobile systems. In this, we focus on phishing attacks under mobile environments.

Mobile Phishing App-based phishing attack is a major problem on mobile devices [11], [13], [7], and phishing apps

are one of the most popular types in malicious apps [5], [6], [7], [3], [2], [9]. Repackaged apps are the most useful

technique to perform similarity attacks (spoofing attacks) for mobile phishing [10]. RESDROID [4] leverage new

features extracted from core resources and source code to detect repackaged apps; however, phapps do not rely on

repackaging techniques. Sun et al. [6] introduced that attackers can analyse the GUI code of the original apps,

modify the corresponding layout code, and then add logical code to manipulate the original logic. However,

developers can obfuscate or pack their apps to avoid repackaging malware attacks (e.g., repackaging phishing

attacks). Meanwhile, this process heavily relies on the attacker’s knowledge about the original app code. Bianchi et

al. [8] extracted API call sequences via static code analysis to detect phishing apps, however, static analysis is

limited to known attack vectors, and many similarity attacks don’t require specific API calls. DROIDEAGLE [6]
used the similarity of layout tree between official apps and third-party apps to detect mobile phishing apps. Marforio

et al. [1], [2] leveraged personalized security indicators as a mechanism to avoid mobile phishing attacks.

MOBIFISH (APPFISH) [7][3], [14] used OCR techniques to extract texts from the screenshot of a login interface. It

identifies the identity from the extracted texts, and compares it with the actual identity from a remote server of

mobile apps. If two identities are different, there is a warning presented to users. However, it has two shortcomings:

(1) Many login pages do not contain app identities; (2) A whitelist of legitimate domains are required, in addition to

a database of suspicious applications that needs to first be constructed and continuously updated. In this paper, we

propose GUI-Squatting attacks; however, code obfuscations and packs will not affect the capability of our approach,

and knowledge of the original app code is not essential. Moreover, our approach can bypass the state-of-the-art

repackaging or clone detection techniques [20]. In addition to similarity attacks, window overlay and task hijacking

are common mechanisms to execute mobile phishing attacks [1], [6], [7]. Although we do not focus on these two

methods, our approach can also help generate the similar UI pages that can be leveraged by these two attacks.
However, these two methods can be detected and mitigated by many cutting-edge detection techniques [2], [9], [10].

A recent defence solution has been proposed in [15] based on GUI-related APIs/permissions. WINDOWGUARD

proposed a security model, Android Window Integrity [9] (AWI), to protect the system against all GUI attacks,

including window overlay and task hijacking, The generated phapps are able to bypass all of these detection

techniques successfully.

III. EXISTING SYSTEM

Many researchers have previously been carried out in this field. We have gathered the information from

various such works and have profoundly reviewed them which has helped us in motivating our own methodologies

in the process of making a more secure and accurate system.

Phishing, as a type of social engineering attack [15], [18], is often used to steal user information, such as
login credentials. It occurs when an attacker masquerades as a trusted entity (resembling the original web page or

application) [13]. Web phishing attacks date back to 1995 [17], but recently, attackers have shifted their attention to

mobile devices [17]. Due to the small screen size and lack of identity indicators of URLs seen next to online web

sites, mobile users have become more vulnerable to phishing attacks. On mobile devices, 81% of phishing attacks

are carried out using phishing apps, SMS, or web pages [13].

Mobile oriented phishing attacks are classified into two strategies: (1) masquerade as original apps; or (2)

hijack existing original apps. Mobile phishing attacks can be classified into three types based on the above two

strategies.

Similarity attacks (spoofing attacks) analyse the GUI code of the original app and partially modify the GUI

code. Attackers then add logic code to manipulate the original app logic [6]. For example, attackers can crack

payment apps to bypass the payment functionality. Window overlay attacks render a window on top of mobile

screen, either partially or completely (e.g., similar UI pages) overlapping the original app window [11], [12]. For
example, attackers choose a particular time to render the phishing UI pages by monitoring the occurrence of the

original app’s login activity. This attack usually leverages the flaws of design mechanism in mobile Task hijacking

attacks trick the system into modifying the app navigation behaviours or the tasks (back stacks) in the system [3],

[6]. For example, the back button is popular with users because it allows users to navigate back through the history

of activities. However, attackers may abuse the back button to mislead the user into a phishing activity .In short,

attackers try to modify the tasks and back stack to execute phishing attacks.

IV. PROPOSED SYSTEM

In existing mobile phishing attack techniques: a successful phishing app requires two constrains: page

confusion and logic deception. In this paper, we propose a new powerful Dos attack called “GUI-Squatting Attack”

AUTOMATED EMBOSS OF MOBILE (ANDROID) PHISHING APPS via GRAPHICAL USER ..

www.ijres.org 29 | Page

based on fully automated generation of phishing UI pages and apps and novel base method. Moreover, our approach

can generate similar UI pages for the phishing attacks mentioned above. The following differences make the GUI-

Squatting attack more threatening than previous attacks. (1) Only the login page(s) of an app is needed and no other
inputs are necessary, making a large-scale attack desirable, disregard of platform limitations. (2) No requirements of

domain knowledge and conventional attack techniques (e.g., repackaging and clone techniques) make the result

harder to detect. (3) It can handle a wide range of attacks due to the low cost of the generation process, and it can

launch targeted attacks like credential spear phishing attacks [3]. Our generated phishing apps can successfully

control every pixel of the screen and capture real users’ credentials without raising the user’s attention under

practical GUI-Squatting attacks in the real world.

Our approach is implemented in Python 3, and leverages several open source libraries to automatically give

arise to phishing application. Specifically, we use OPENCV [7]) and OCR techniques to extract components and

their attributes (e.g., coordination positions, width, height, color, texts) from the screenshots of User interface pages.

Meanwhile, we use Tesseract#makebox to excerpt the coordinate of each letter. To classify the types of segmented

components within the User Interface screenshots, we adopt the CNN model in our model contains three
convolutional layers, three pooling layers, and two fully-connected layers. Within the convolutional layer, we set the

filter (screen) size as 3, the stride as 1, and padding size as 1. The same setting also applies to the pooling layer. For

two fully-connected layers, both have 128 neurons. We implement our network with the Tensor flow framework

written in Python. We generate the login GUI code for the given UI screenshot. For each component, we use two

layout attributes (i.e., android:layout margin Left and android: layout marginTop) to identify their coordinates. In

addition to the basic attribute settings, we also transfer attributes of the component to corresponding layout code

(e.g., android: textColor, android:inputType). After implementing the UI login code, we implement 10 types of

responses from Table 2 when interactive components are clicked; each component has a different response attached

within the deception code. As for the response to login actions, we randomly choose one response to be attached to

the “login” button. Our implementation runs on a 64-bit.Evaluate our approach in the following five aspects: (1) UI

page similarity comparison between the User interface pages of the original apps and our generated phishing

application; (2) UI page generation comparison between the state-of-the-art UI generation tools and our approach;
(3) Performance of our CNN classification; (4) Ability to evade detection by the state-of-the-art anti-phishing

techniques; (5) A human study to identify the power and impact of our phapps. We randomly collect 500 Android

apps (250 financial apps and 250 social apps) from the top 100 financial and social categories from the Google Play

Store, as the apps in these two categories are usually security- and privacy critical. All apps require users to login

before use. These are the most famous apps (e.g., Facebook, Twitter) with over 1,000,000+ installs, mainly

originating from USA, China, and European countries. We guarantee the representativeness of the selected original

apps in terms of their number of installs and representative categories. Given the screenshots of login pages and

icons of these apps, we generate the corresponding 50 phishing apps using our approach. The dataset of (50 original

apps and 50 phishing application in total) is used to conduct the following experiments. Besides the 50 financial

apps and social apps used in our experiments, in order to reduce the influence of randomness, we further select 20

apps that were downloaded from different times off the Google Play Store that also contain login pages to validate
the similarity of our results. From the comparison of results, the corresponding generated UI pages of these 20 apps

are also sufficiently similar (they achieve over 95% similarity on average in terms of mean absolute error (MAE)

and mean squared error (MSE)) and can be used in the GUI-Squatting attack directly. More generated phishing UI

pages can be found on our website [10].

LIMITAIONS

 Our approach does not fully Grasps the font family/color of the text extracted from the EditText component,

causing a small visual difference if the app uses a special font family. Fortunately, according to the evaluation,

users are insensitive of such differences.

 Since we develop components with normal attributes, such as a plain background of EditTexts, if the original

app uses a colourful image (e.g., photos) as the background of EditTexts, we cannot develop a perfect copy of
its UI page.

 As for targeted User Interface pages with smaller resolutions, we need to scale the component to an equivalent

size to deploy the same phishing application on devices with larger intension.

V. CONCLUSION

In this Paper, we propose a novel approach to automatically generate platform-independent phishing

application, to allow a powerful and large-scale phishing attack (Graphical User Interface -Squatting attack) on

different categories of apps within 3 seconds. Our phishing application successfully masquerades as original apps

without raising users’ special attention in information effusion.

REFERENCES
[1]. (2015) Alleged ‘Nazi’ Android FBI ransomware mastermind arrested in Russia. [Online]. Available: https://www:forbes:com/

AUTOMATED EMBOSS OF MOBILE (ANDROID) PHISHING APPS via GRAPHICAL USER ..

www.ijres.org 30 | Page

[2]. (2018) Android Packers. [Online]. Available: https://d3gpjj9d20n0p3:cloudfront:net/AndroidPackers Hacktivity:pdf

[3]. (2018) Canny Edge Detection. [Online]. Available: https: //docs:opencv:org/3:4/da/d22/tutorial py canny:html

[4]. (2018) Dilatation Edge. [Online]. Available: https://docs:opencv:org/2:4/doc/tutorials/imgproc/erosion dilatation/erosion dilatation:html

[5]. (2018) GDPR. [Online]. Available: https://www:tripwire:com/ solutions/compliance-solutions/gdpr/

[6]. (2018) One-way analysis of variance. [Online]. Available:https://en:wikipedia:org/wiki/One-way analysis of variance

[7]. (2018) Opencv. [Online]. Available: https://opencv:org/

[8]. (2018) Optical Character Recognition. [Online]. Available:https://en:wikipedia:org/wiki/Optical character recognition

[9]. (2018) Phishers leveraging GDPR-Themed scam emailsto steal users’ information. [Online]. Available: https://securityboulevard:com

[10]. (2018) Squatting attack. [Online]. Available: https://en:wikipedia:org/wiki/Squatting attack

[11]. (2018) Tesseract. [Online]. Available: https://github:com/tesseract-ocr/tesseract

[12]. (2018) UIAutomator. [Online]. Available: https://developer:android:com/training/testing/ui-automator

[13]. D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C. Siemens, “Drebin: Effective and explainable detection of Android

malware in your pocket.” in NDSS, 2014.

[14]. T. Beltramelli, “pix2code: Generating code from a graphical user interface screenshot,” arXiv preprint arXiv:1705.07962, 2017.

https://www:tripwire:com/

