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The application of deep learning for the detection of lymph node metastases on histologic slides has 

attracted worldwide attention due to its potentially important role in patient treatment and prognosis. Despite 

this attention, false-positive predictions remain  problematic, particularly in the case of reactive lymphoid 

follicles. In this study, a novel two-step deep learning algorithm was developed to address the issue of false-

positive prediction while maintaining accurate cancer detection. Three-hundred and forty-nine whole-slide lung 

cancer lymph node images, including 233 slides for algorithm training, 10 slides for validation, and 106 slides 

for evaluation, were collected. In the first step, a deep learning algorithm was used to eliminate frequently 

misclassified noncancerous regions (lymphoid follicles). In the second step, a deep learning classifier was 

developed to detect cancer cells. Using this two-step approach, errors were reduced by 36.4% on average and up 

to 89% in slides with reactive lymphoid follicles. Furthermore, 100% sensitivity was reached in cases of 

macrometastases, micrometastases, and isolated tumor cells. To reduce the small number of remaining false 

positives, a receiver-operating characteristic curve was created using foci size thresholds of 0.6 mm and 0.7 mm, 

achieving sensitivity and specificity of 79.6% and 96.5%, and 75.5% and 98.2%, respectively. A two-step 

approach can be used to detect lung cancer metastases in lymph node tissue effectively and with few false 

positives.  

Traditional microscope and glass slides have been used by pathologists to diagnose disease since the 

mid-19th century. The conventional workflow involves manual review of numerous glass slides and requires a 

significant amount of time and effort on the part of the pathologist.
1e3

 The emergence of slide scanning 

machines capable of outputting high resolution digital slides has brought traditional pa-thology into the digital 

era, providing numerous advantages to the pathology workflow. One of these advantages is the ability to use 

computational techniques, including auto-mated image analysis, to aid pathologists in the examination and 

quantification of slides, thus reducing the time required for manual screening and improving the pathologist’s 

ac-curacy, reproducibility, and workflow efficiency.
 

Recently, the application of deep learning techniques to assist diagnosis has attracted considerable 

interest in pa-thology. Convolutional neural networks (CNNs), in particular, have demonstrated enormous 

potential in medical image recognition tasks.
7e10

 In pathology, CNNs have been used in several image 

recognition applications with valuable results, from tumor cell detection in primary breast cancer, to grading 

glioma and prostate cancer, to counting mitoses and segmentation of tumor-associated stroma, to building 

whole-slide image (WSI)-based prognostic data.
10e16

 

A review of lymph nodes is critical for staging cancer and making appropriate therapeutic decisions.
17

 

Involvement of multiple lymph node levels is a key factor in determining prognosis, and careful assessment of 

lymph node status is 

For this reason, the detection of metastases in lymph node tissue is an area that could stand to benefit 

from de-velopments in automated tissue classification using machine learning approaches. In 2016 and 2017 a 

series of compet-itive international challenges, Cancer Metastases in Lymph Nodes Challenge 2016 and 2017 

(CAMELYON16 and CAMELYON17), were held to identify machine learning algorithms capable of detecting 

and staging breast cancer metastases.Some of the top-scoring entries in these challenges were able to 

demonstrate better performance in detecting micrometastases than a pathologist with time constraints,
20

 as is 

usual with most pathologists working in busy practices. Similar to breast cancer, lymph node me-tastases in lung 

cancer play an important role in evaluating disease stage, selecting treatment options, and determining 

prognosis.
22,23

 Among all cancers, lung cancer is the lead-ing cause of cancer-related death worldwide.
24
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Although lymph node metastases in lung cancer and breast cancer share some similar characteristics, they have 

certain distinct histologic features attributed to their respective cancer subtypes. In addition, mediastinal lymph 

nodes frequently show more prominently reactive histologic changes, including multiple hyperplastic lymphoid 

follicles and abundant anthracotic pigment-laden macrophages. These findings are not usual for extramediastinal 

locations, which may create difficulty when distinguishing tumor and non-tumor components in lymph node 

tissue using machine learning algorithms. 

For tumor detection tasks, there is a tradeoff between achieving high sensitivity in detecting 

micrometastases and a high false-positive error rate, especially for the identifi-cation of isolated tumor cells 

(ITC).
21

 Interestingly, errors made by deep learning algorithms do not strongly correlate with human errors, and 

are more often attributed to technical issues with the digital slide, such as out-of-focus areas or folds, 

misclassification of tumor confounding histologic patterns, or benign components of the lymph node that share 

morphological similarity with tumor tissue, including germinal centers, macrophages, and stroma.
6,25,26

 

Although technical errors can be prevented by more careful prepara-tion of slides, the histologic tumor mimics, 

especially by hyperplastic lymph nodes with reactive lymphoid follicles and enlarged germinal centers, remains 

an issue without an effective solution. Since these are common components of all lymph node sections, this 

limitation significantly restricts the clinical utility of algorithms used for metastatic tumor detection. 

In this study, a deep learningebased software program with an integrated CNN algorithm was applied 

to the detection of lung cancer lymph node metastases in WSIs. A new method for metastatic tumor detection in 

lung cancer is proposed involving two steps of deep learning tissue classification in which the first step is used 

for exclusion of germinal centers and the second for tumor cell detection. The hypothesis is that this new 

approach can reduce false positives caused by tumor mimics and increase accuracy in the detection of lymph 

node metastases compared to using only one deep learning algorithm (one-step approach). 

 

I. MATERIALS AND METHODS 
This study was approved by the ethical board of Nagasaki University Hospital (19021824) and Kameda Medical 

Center (18-210). 

 

Materials 

A total of 349 lymph node slides from 101 lung cancer patients with various histologic tumor types and 

stages were enrolled. Slides were collected at Nagasaki University Hospital, Japan, from 2014 to 2018, and from 

Kameda General Hospital, Japan, from 2007 to 2018. Details on the WSI data used in this study are shown in 

Table 1. Of 349 slides, 233 slides were used for training algorithms, 10 slides were used for validation, and 106 

slides were used for testing. The validation set, which was separate from the training and testing sets, was used 

in the first step of the study and for all parameter tuning and model design choices in the trials. 

 

Further details on the histologic subtypes can be found in Supplemental Table S1. Metastases were classified 

following the clinical practice guidelines as macro- 

 

metastases (the largest tumor deposit had a diameter 2 

 

mm), micrometastases (0.2 to 2 mm), and ITC (<0.2 

mm).17,27 

 

Digitalization and Annotation 

Glass slides were scanned into digital slides using an Aperio Scanscope CS2 digital slide scanner 

(Leica Biosystems, Buffalo Grove, IL) with a 40 objective (0.2517 mm/pixel). Digital slides were imported into 

HALO software version 2.2 (Indica Labs, Corrales, CA) for all subsequent steps, including annotation, training, 

and classification of digital slides. Tissue classification was performed using the HALO Tissue Classifier 

analysis module (random forest algorithm) and HALO AI (CNN, VGG network). Annotations used for training 

the tissue classification algorithms were drawn by one pathologist with 7 years of experience in pathology 

(H.H.N.P.), with supervision by an expert pulmonary pathologist (J.F.). 

 

Trials of the New Strategy 

First, a single classifier with two classes, tumor and non-tumor, was developed using a CNN algorithm. 

Around 4000 annotations, including various polygonal outlines, were provided for training of each class using 

high-resolution 
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Table 1 Data for the Whole-Slide Lymph Node Images Used for the Lung Cancer Metastasis Experiments 

Category Training Validation Testing Total 

     

Macrometastasis 100 4 24 128 

Micrometastasis 7 0 23 30 

ITC 0 0 2 2 

Nonmetastasis 126 6 57 189 

Total 233 10 106 349 

     

 

 

Data are numbers of slides per category. 

ITC, isolated tumor cells. 

images (0.25 mm per pixel). The classifier was trained for 

 

3 10
6
 iterations. The results showed that, although all metastases were detected at the slide-based level (100% 

sensitivity), many false-positive foci were found in both metastatic and nonmetastatic slides (0% specificity). 

Lymphoid follicles were found to be a common tumor mimic and a frequent cause of false-positive foci using 

this classifier (Figure 1A). 

In the next step, a second classifier was created with three classes: tumor, lymphoid follicle, and other 

tissue. The HALO AI CNN was trained with 2371 annotations labeled lymphoid follicles, 3902 annotations 

labeled tumor, and 3030 annotations for others. Training and classification were performed at high resolution 

(0.25 mm per pixel) for 7.4 10
5
 training iterations. The hypothesis was that by separating lymphoid follicles into 

a distinct class, the tumor detection algorithm would better differentiate them from tumors. When it was applied 

in the validation set, there was similar sensitivity and specificity as the first classifier, due to misclassification of 

lymphoid follicles, especially reactive follicles (Figure 1B). Therefore, these two classifiers were not further 

used in this study. 

A step-wise approach in which two separate classifiers were developed and linked was then tested. The 

first clas-sifier was designed to exclude lymphoid follicles from the rest of the tissue (including any tumor that 

might be pre-sent), and the second classifier was designed to detect tumor cells in the lymphoid-excluded tissue. 

In the first step, two different algorithms were tested to build lymphoid exclusion classifier, a random forest 

machine learning algorithm, and a deep learning CNN algorithm. In the next step, a deep learning algorithm was 

used to detect tumor cells. This method was based on the idea that a two-step algorithm could reduce most false-

positive findings and produce a more accurate tumor detection tool in comparison to the one-step strategy 

(Figure 1, C and D). 

 

Model Development 

In the training step, annotations were divided into three separate component classes: tumor, lymphoid 

follicle, and other. Depending on the specific task of each machine learning model, different classes were 

chosen as the input data for training that model (Figure 2). Annotations of tumor were provided in various sizes, 

mimicking both macro and micrometastases, as well as ITC, to maximize the learning ability of the models. 

 

Lymphoid Follicle Detection and Exclusion in the First Step 

To determine the best model for lymphoid follicle detection, two different models were created. Model 

1 was a random forest classifier [Lymphoid Follicle Random Forest Model (LFRFM)]. Random forest 

classifiers can obtain a good result with a small amount of training data.
28

 In addition, based on the settings of 

the HALO software (analysis on texture and color of images) that prefers few and small training regions, 65 

annotations were provided with two classes: lymphoid follicles (20 annotations) and others (45 annotations) 

including tumor area, for training the model. Training and classification were performed at a low reso-lution of 

4.4 mm per pixel. 

Model 2 was a deep learning classifier [Lymphoid Fol-licle CNN (LFCNN)]. Because a deep learning 

algorithm typically requires a considerable amount of training data for its multiple deep layers of structure to 

improve accuracy,
28

 more annotations were provided with 2332 training regions in total, representing two 

classes: lymphoid follicles (1243 annotations) and others (1089 annotations) containing the tumor area. Training 

and classification were performed at a medium resolution of 1.04 mm per pixel with 3.35 10
4
 training iterations. 

Two models then were applied in the validation set to test the ability of lymphoid follicle detection. 

Among them, the model that could best identify lymphoid follicles on WSIs was chosen. All lymphoid follicles 
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would then be excluded, and the layer without lymphoid follicles would be further analyzed in a second step 

using another deep learning model, model 3 [Tumor Detection CNN (TDCNN)], to detect cancer cells. 

 

Tumor Cell Detection in the Second Step 

The task of the second step was to detect cancer cells on lymph node slides using model 3 (TDCNN). In this 

step, the HALO AI CNN was trained with 10,155 total training an-notations representing two classes: tumor 

(4196 annota-tions) and others (5959 annotations). Training and classification were performed at a high 

resolution of 0.25 mm per pixel, which is equal to the high-power field of a microscope used in pathologic 

diagnoses. It was then trained for 1 10
7
 iterations. Apart from its primary pur-pose, to analyze the layer without 

lymphoid follicles ach-ieved from the first step to detect metastatic tumors, the TDCNN model was also used to 

predict metastases in one step for purposes of comparison with the two-step deep learning algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 A and B: Multiple large false-positive areas are represented as cancer foci in germinal centers of 

lymphoid follicles detected by the first and second trial set of deep learning classifiers. Upper row: hematoxylin 

and eosin staining of original images. Lower row: red: tumor, blue: other, and white: lymphoid follicle. Boxed 

areas in left panels of A and B are shown in higher magnification in right panels. C: The hypothesis was that the 

two-step deep learning algorithm can achieve better results compared with the one-step method. D: Strategy for 

two-step deep learning algorithms in detail. Scale bars: 2.0 mm (A, upper and lower left panels); 300 mm (A 

and B, upper and lower right panels); 500 mm (B, upper and lower left panels). WSI, whole-slide image. 
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Convolutional Neural Network Training and Application 

In this study, HALO AI settings were fixed at a probability threshold of 50% on the tumor heatmap for 

the outcome, indicating that only pixels with more than 50% possibility of displaying a tumor were labeled as 

positive for the cancer class on the WSIs. The GeForce GTX TITAN X graphics card (NVIDIA, Santa Clara, 

CA) provided the required GPU for HALO AI. HALO AI utilizes the Caffe engine and a fully convolutional 

version of the VGG architecture
29

 with all padding removed. Training was conducted on patches of 435 at the 

defined resolution. The patches were generated by picking a random class (with equal probability for each 

class), a random image containing annotation for the chosen class, and a random point inside a region of the 

chosen class and image. The patches were cropped around the chosen point and further augmented with random 

rota-tions and random shifts in hue, saturation, contrast, and brightness. The model was pre-trained on ImageNet 

and then trained for the defined number of iterations using RMSProp
30

 (delta of 0.9) with a learning rate of 1e-3, 

a reduction in the learning rate by 10% every 10,000 itera-tions, and an L2 regularization of 5e-4. Because there 

was no padding in the model during analysis, the tile size was increased to 1867 1867, increasing the 

performance without changing the output. 

 

Evaluation of Results 

In the first step (lymphoid follicle exclusion), two models were tested in the described trial slide set to 

evaluate their ability to identify lymphoid follicles. Each image was divided into small patches (100 100 mm) 

and compared with the annotation of the pathologist (ground truth for lymphoid follicle detection). The patch 

would be considered as i) a true positive if the predicted area overlapped by more than 50% with ground truth, 

ii) a false positive if there was less than 50% overlap with ground truth, iii) a true negative if there was no 

positive prediction outside of ground truth areas, or iv) a false negative if there was no positive pre-diction 

inside a ground truth area. To evaluate the outcome of each model, accuracy was calculated based on the sum of 

the accuracy of all patches for all images. 

In the second step, evaluation was performed at the slide level. After analysis, slides were labeled as 

metastasis or no metastasis based on the presence or absence of a tumor classification on the slide and as 

macrometastases, micro-metastases, or ITC based on the largest diameter of positive area measured manually 

with a ruler in HALO software. The maximum positive area identified by the algorithm was chosen if multiple 

metastatic foci were identified on a single slide. This result was compared against the ground truth, which was 

provided by the recorded diagnosis of the expert pathologist. 

For optimal assessment of false-positive reduction on slides, the testing data set was split into two groups: with 

and without lymphoid follicles, due to the fact that not all lymph node slides contain lymphoid folli-cles. In this 

study, lymphoid follicles were defined as reactive lymphoid follicles with enlargement in shape and size, a 

prominent germinal center, a mantle zone, and numerous tingible body macrophages with mixed centroblasts 

and centrocytes. The slides in the group without lymphoid follicles had only small lymphocyte aggregations or a 

few small-to-normalesized lymphoid follicles. The two groups were then analyzed using both the one-step and 

the two-step methods, to evaluate the amount of error reduction achieved by the two-step method. The formula 

for false-positive area reduction was calculated as: 

 

Reduction of   Z 

FP area of one step  FP area of two 

step 

FP area of one step 

false positive ðFPÞ  

 

Statistical significance was determined using a one-sided t-test, with P < 0.05 considered statistically 

significant. Statistical analysis was performed using the Stata statistical software package version 14.2 

(StataCorp LP, College Station, TX). 

 

II. RESULTS 
Lymphoid Follicle Exclusion in the First Step 

The two models performed differently with respect to lymphoid follicle prediction. The accuracy of 

model 1 (LFRFM) and model 2 (LFCNN) was 51.7% and 94.5%, respectively. The LFCNN model showed a 

well-fitting shape with the original lymphoid follicles seen in hema-toxylin and eosin images, whereas the 

LFRFM showed many false positives in which tumor cells were mis-classified as lymphoid follicles (Figure 3). 

On the basis of these results, the LFCNN model was chosen to eliminate all lymphoid follicles from the slides 

prior to the second step. 
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Tumor Cell Detection in the Second Step 

To evaluate, in detail, the tumor detection results at the slide level, a confusion matrix was created 

showing accuracy in percentage terms for tumor prediction in different sized metastases (Table 2). The two-step 

deep learning algorithm performed well in identifying positive slides, including all macrometastases, 

micrometastases, and ITC with 100% accuracy. Examples of metastasis prediction are displayed in Figure 4. By 

contrast, the algorithm worked poorly in identifying negative slides. All negative slides still retained some tiny 

foci of false positivity, which were considered by the algorithm as either ITC (31.6%) or micrometastasis 

(68.4%). Therefore, the sensitivity and specificity at the slide-based level of all slides were calculated as 100% 

and 0%, respectively. 
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Figure 2 Input data information with detailed features of the three models used in the two-step method. 

A: Input data with three different types of annotation based on hematoxylin and eosin slides [numbered from (1) 

to (3)]. B: Two separated models (Lymphoid Follicle Random Forest Model and Lymphoid Follicle 

Convolutional Neural Network) were created in the first step to identify lymphoid follicles, with two classes of 

lymphoid follicles [slide (1)] and others including tumor [slides (2) þ (3)] used for training. C: A deep learning 

algorithm (Tumor Detection Convolutional Neural Network) was trained with two classes of tumor [slide (2)] 

and others including lymphoid follicle [slides (1) þ (3)] to detect tumor cells in the second step. WSI, whole-

slide image. 

With the above-described two-step approach, there was a significant reduction in error achieved by the 

deep learning tissue classification method compared with that of the one-step method. In addition, accurate 

identification of true cancer cells was retained (Figure 5A). In groups with and without lymphoid follicles, a 

remarkable elimination of false-positive areas was noted with the two-step approach. In slides that contained 

prominent reactive lymphoid folli-cles, an 89% reduction in false-positive area was reached by lymphoid follicle 

exclusion, with large false-positive foci 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Lymphoid follicle detection task in the first step. The top row shows different shapes and sizes of 

lymphoid follicle prediction from two models. Lymphoid Follicle Convolutional Neural Network (LFCNN) 

shows better results (LFCNN, top row), concordant with the lymphoid follicles of the original image 

[hematoxylin and eosin (H&E), top row]. The bottom row shows false positives, in which the Lymphoid Follicle 

Random Forest Model (LFRFM) labels lymphoid follicles as tumors (LFRFM, bottom row). By contrast, there 

is no error in the same area of the LFCNN result (LFCNN, bottom row). LFRFM orange: lymphoid follicles, 

cyan: others. LFCNN white: lymphoid follicles, blue: others. Black circle indicates incorrect recognition. Scale 

bars: 500 mm (top row); 200 mm (bottom row). 

accounting for the majority of this reduction. Including all slides, the results showed 36.5% and 5.4% 

reductions in false-positive area using the two-step algorithm in groups with and without lymphoid follicles, 

respectively; 

 

P < 0.0001 (Figure 5B). 

 

Some small false-positive foci that were unrelated to lymphoid follicles remained, causing a 0% 

specificity. Applying the solution of removing positive detection area by size, different levels of specificity and 

sensitivity were obtained. A receiver-operating characteristic (ROC) curve was plotted based on the largest 

diameter of the deleted positive area, to evaluate metastasis classification, which reached an area under the 

curve of 0.922 (Figure 6). The two best filters were 0.6 mm, which achieved a sensitivity and specificity of 
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79.6% and 96.5%, respectively, and 0.7 mm, which achieved a sensitivity and specificity of 75.5% and 98.2%, 

respectively. The data underlying the ROC curve are provided in Supplemental Table S2. 

 

 

Table 2 Slide-Level Confusion Matrices Indicating Accuracy (in Percentages) of the Two-Step Deep Learning 

Algorithm Prediction with Variously Sized Metastases 

 

Prediction 

 

Ground-truth Negative ITC Micro Macro 

Negative 0 31.6 68.4 0 

ITC 0 100 0 0 

Micro 0 0 100 0 

Macro 0 0 0 100 

     

 

 

ITC, isolated tumor cells; Macro, macrometastasis; Micro, micrometastasis. 

The training and testing set was largely (95%) composed of the most common histologic types of lung cancer, 

namely adenocarcinoma and squamous cell carcinoma. Interest-ingly, the two-step deep learning algorithm 

could also detect lymph node metastases in much rarer types of lung cancer, including pleomorphic carcinoma, 

spindle cell carcinoma, large cell neuroendocrine carcinoma, and signet ring cell carcinoma (Supplemental 

Table S1 and Supplemental Figure S1). 

 

III. DISCUSSION 
This study describes the successful detection of lymph node metastases using a novel two-step deep 

learning approach within a commercially available deep learning platform. In addition, it is the first study on the 

detection of lung cancer lymph node metastases from WSIs. The two-step approach is a useful protocol, which 

can serve as a tool to assist with the work of the pathologist. 

The subject of the CAMELYON challenge was breast cancer metastases, and although this is histologically 

different from lung cancer, metastatic diseases share the same overall characteristics: atypical cancer cells with 

hyperchromatic enlarged nuclei arranged in various patterns such as glands, clusters, etc, on the background of 

lymph node tissue. On that basis, the result of this study is com-parable with that of the CAMELYON challenge. 

Notably, our method achieved an accuracy that is relatively better than what has been achieved thus far in the 

CAMELYON challenges, particularly with regard to the detection of ITC and micrometastases.
21

 Although ITC 

prediction was an issue for many CAMELYON teams, it was not in our case. ITC prediction rates for the 

CAMELYON teams were low, and their instruments performed poorly in terms of accuracy (0% to 34.3%), 

with the current best algorithm reaching only 11.4% accuracy. Only the top two teams could identify 

micrometastases well, with rates of 75.9% and 83.1%, whereas all other algorithms detected only two-thirds of 

all cases or less.
21

 In this study, the sensitivity for detection of micrometastases and ITC (100% for both) was 

significantly higher than those of previous teams. In addition, various histologic subtypes were included for both 

training and testing steps, and the algorithm successfully detected these tumors in the testing step (Supplemental 

Table S1 and Supplemental Figure S1). 
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Figure 4 Detection of variously sized metas-tases using the two-step deep learning algorithm 

[Lymphoid Follicle Convolutional Neural Network (LFCNN) þ Tumor Detection Convolutional Neural 

Network (TDCNN)]. Macro-metastasis (A and B), micrometastasis (C and D), and isolated tumor cells (E and 

F) were detected by this method. The original hematoxylin and eosin staining in the lymphoid follicle area in the 

image (D, green arrow) suggests that it is totally deleted by LFCNN and cannot be further analyzed in the 

second step by TDCNN. Red: tumor; blue: others; yellow outline: annotation of tumor as ground-truth by 

pathologist. Scale bars: 2.0 mm (A and B, top row); 200 mm (C and D, middle row); 50 mm (E and F, bottom 

row). 

Another strong point of this work is the development of a unique two-step approach to remove false-

positive errors in metastatic tumor cell detection. In CAMELYON16, many of the submissions suffered from 

high false-positive error rates.
20

 In CAMELYON17, teams tried, with limited suc-cess, to reduce this error by 

including hard-negative mining steps. In fact, their overall errors were worse, and the ac-curacy at the slide level 

decreased, with 67 of the 500 slides misclassified by the best-ranked team.
21

 By observing the error exhibited in 

the results of CAMELYON16 and in our own experience, the germinal center area of lymphoid fol-licles were 

identified as a frequent source of false-positive error. Most of the false-positive foci that were success-fully 

eliminated by the exclusion step in this study were within large, active lymphoid follicles. The false-positive 

foci that remained after the exclusion step were outside of lymphoid follicles and mostly composed of small 

clusters of sinus histiocytes or fibroblasts (Figure 5A). Slides with reactive lymphoid follicles have the potential 

to have larger false-positive areas due to cancer-mimicking germinal cen-ter areas. As such, slides without 

reactive lymphoid follicles showed fewer prediction errors. 

The effective exclusion step (first step) in this study was based on the better LFCNN algorithm chosen 

between two models: LFCNN and LFRFM. A small number of anno-tations were provided in the training set 

(65 annotations) for LFRFM owing to the fixed setting of the random forest classifier structure in the software. 

Although the random forest classifier achieved satisfactory results only with a small training data set in some 

studies,
28

 it showed diffi-culty in separating the germinal center and marginal zone, two major components of 

the lymphoid follicle; this indi-cated inadequate accuracy of classifying heterogeneous subjects. Conversely, 

LFCNN is a deep learning algorithm that can benefit from a large amount of data to improve performance. A 

total of 2332 annotations with 3.35 10
4
 iterations was considered to be a reasonable amount of data for training a 

deep learning algorithm. The regularity in shape and size of lymphoid follicles may explain the highly accurate 

predictions for a deep learningebased model such as LFCNN. 
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Figure 5 Tumor detection with reduction of the false positive area by two-step deep learning 

algorithms. A: One-step deep learning presents multiple false-positive foci (middle column), whereas two-step 

reduces almost all of them (right column). Note that correct tumor prediction still remains after the second step 

(A, two-step, top row). B: The average of false-positive areas shows statistically significant dif-ferences in error 

reduction between the one-step and two-step approaches in groups with and without lymphoid follicles. Red: 

tumor; blue: others; yellow outline: ground-truth of tumor; green arrowheads: false-positive foci. ****P < 

0.0001. Scale bars: 500 mm (A, top and middle rows); 300 mm (A, bottom row). H&E, hematoxylin and eosin; 

LF, lymphoid follicles. 

The low percentage of error reduction obtained in the group without lymphoid follicles and when combining all 

slide sets was due to the accumulation of multiple small pseudopositive areas on the WSI. Size filtering was a 

common method used in CAMELYON challenges to reduce false-positive rates.
20,21

 In this study, an ROC curve 

was created using different sizes of false-positive foci as the filter and by comparing the sensitivity and 

specificity of metas-tasis detection. The size of removal foci could be up to 1.2 mm, which caused some missing 

cases of micrometastases. In this study, on the basis of the ROC curve, the two best size filters were 0.6 mm and 

0.7 mm. Although these filters excluded some foci of true micrometastases, it is notable that the role of small 

metastases and ITCs in the prognosis of lung cancer is less certain when compared with macro-metastases. 

Some studies have shown no association be-tween small-sized metastases and patient survival rate, raising the 

suggestion that lung cancer patients should not be upstaged based on the presence of only small metasta-ses.
31,32

 

Depending on the purpose of the deep learning algorithm, used as a screening tool or as an assistant for 

confirmation of the pathologist’s diagnosis, different cutoff points can be used to achieve different sensitivities 

and specificities. 

 

False-posive rate 

 
Figure 6 A receiver-operating characteristic (ROC) curve for slide-level metastasis detection with 

removal of different sizes of small positive-predictive foci. Adjusting the filter from 0 to 1.2 mm, an ROC curve 

of lymph node metastasis detection was generated by the two-step deep learning algorithm, which achieved an 

area under the curve of 0.922. The two best filters were 0.6 mm and 0.7 mm, indicating removal of small 

detections with sizes 0.6 mm and 0.7 mm, respectively. For the 0.6-mm filter, the sensitivity and specificity 

were 79.6% and 96.5%, respectively, and for the 0.7 mm filter, the sensitivity and specificity were 75.5% and 

98.2%, respectively. 

The requirement to exhaustively evaluate numerous lymph node slides in routine practice makes the 

pathol-ogist prone to fatigue and at risk of missing metasta-ses.
18,19

 In previous studies, pathologists had more 
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false negatives in metastatic detection (reduced sensitivity), and although deep learning algorithms could exceed 

the pa-thologist’s sensitivity, they frequently paid a cost of decreased specificity (increased false positives).
21,33

 

Therefore, it is recommended to combine the strength of assistive algorithms with the specificity and expertise 

of pathologists in clinical practice, rather than relying on algorithms alone.
6,21

 In other words, deep learning 

algo-rithms like the one described in this paper could be used to highlight areas of the tissue that should be 

evaluated more rigorously by the pathologist. Importantly, the concept of carcinoma detection on the 

background of reactive lymph nodes is not limited to lung cancer and can be applied to metastatic lymph nodes 

of different solid cancers; therefore, this approach has the potential to contribute to the healthcare workflow on a 

wider scale, where automation through deep learning is becoming an increasingly important component.
34e36 

There are several limitations in this study that require further exploration. First, the version of HALO 

AI software used in this study has a fixed probability threshold of 50% for the tumor class, causing inherently 

high sensitivity and low specificity. Using both steps of deep learning and filtering to remove small false 

positives, this limitation could be minimized. The next version of HALO AI will provide flexible settings for 

users to change the probability threshold, which may improve classification such that size filtering is no longer 

required. Another limitation is the relatively small number of cases with micrometastases (23 cases) and ITC (2 

cases), as well as the number of cases in the validation data set that was used for the trials and the first-step 

models (10 cases). 

Despite these limitations, this two-step deep learning method has potential to be applied in multiple 

research di-rections and could be incorporated into the pathology workflow in the future. To improve the 

existing algorithm’s accuracy in metastasis detection, the number of slides collected in the daily workflow and 

the histologic spectrum of lung cancer types used for training will be expanded in future work. Using the next 

version of HALO AI, it will be possible to increase the tumor probability threshold to test whether this can be 

used to improve the balance between sensitivity and specificity in tumor prediction. The two-step approach will 

continue to be used to evaluate its usefulness in different lymph node slides of lung cancer and tumors of 

various other origins. On the basis of these results, the most promising algorithms and methods with the highest 

sensi-tivity and fair specificity will be used in a clinical trial, comparing the accuracy of the pathologist alone to 

the pathologist aided by algorithms, to investigate whether deep learning is additive to the existing clinical 

workflow. In the current condition of pathologist shortages worldwide, this method could be effectively 

integrated into the pathology workflow, potentially improving the quality of diagnoses and reducing the 

pathologist’s workload. 

In summary, using deep learning software with a two-step classification approach, it is possible to 

detect lung cancer metastases in lymph node tissue with high sensitivity, regardless of histologic type. An initial 

classification step can be used to effectively remove false positive predictions caused by lymphoid follicles. In 

light of these results, this method may be a useful addition to the clinical workflow. 
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