Extension of Some Common Fixed Point Theorems using Compatible Mappings in Fuzzy Metric Space

Vineeta Singh
(S.A.T.I., Vidisha) S. K. Malhotra (Govt. Benazir College, Bhopal) Subject Classification 54H25, 47H10

Abstract: In this paper we have proved some common Fixed Point theorems for four mappings using the notion of compatibility.

Keywords: Fuzzy Metric Space, Compatible Mappings

I. Introduction

The concept of Fuzzy sets was investigated by Zadeh [1]. Here we are dealing with the fuzzy metric space defined by Kramosil and Michalek [2] and modified by George and Veeramani [3]. Grabiec [4] has also proved fixed point results for fuzzy metric space with different mappings. Singh and Chauhan[5] gave the results using the concept of compatible mappings in Fuzzy metric space. Jungek [6] introduced the concept of compatible mapping of type (A) and type (B). In fuzzy metric space. Singh and jain [7] proved the fixed point theorems in fuzzy metric space using the concept of compatibility and semicompatibility. Sharma[8] also done work on compatible mappings.

II. FUZZY METRIC SPACE

Definition[2]: A 3-tuple (X,M, *) is said to be a fuzzy metric space if X is an arbitrary set, * is a continuous t-norm and M is a fuzzy set on $X^{2} \times [0, \infty]$ satisfying the following conditions

- (f1) $M(x, y, t) > 0$
- (f2) $M(x, y, t) = 1$ if and only if $x = y$
- (f3) $M(x, y, t) = M(y, x, t)$;
- (f4) $M(x, y, t) * M(y, z, s) \leq M(x, z, t + s)$,
- (f5) $M(x, y, \cdot) : (0, \infty) \rightarrow (0, 1]$ is continuous.

Then M is called a fuzzy metric on X. Then $M(x, y, t)$ denotes the degree i.e. of nearness between x and y with respect to t.

Compatible and Non compatible mappings: Let A and S be mapping from a fuzzy metric space $(X,M, *)$ into itself. Then the mappings are said to be compatible if

$$\lim_{n \to \infty} M(ASx_{n}, SAx_{n}, t) = 1, \forall t > 0,$$

whenever $\{x_{n}\}$ is a sequence in X such that

$$\lim_{n \to \infty} Ax_{n} = \lim_{n \to \infty} x \in X$$

from the above definition it is inferred that A and S are non compatible maps from a fuzzy metric space $(X,M, *)$ into itself if

$$\lim_{n \to \infty} Ax_{n} = \lim_{n \to \infty} Sx_{n} = x \in X$$

but either

$$\lim_{n \to \infty} M(ASx_{n}, SAx_{n}, t) \neq 1,$$

or the limit does not exist.

Main Results:

Theorem: Let A,B,S,T be self maps of complete fuzzy metric space $(X,M, *)$ such that $a*b = \min(a,b)$ for some y in X.

(a) $A(X) \subset T(X), B(X) \subset S(X), T(Y) \subset A(Y)$
(b) S and T are continuous.
Extension of Some Common Fixed Point Theorems using Compatible Mappings in Fuzzy Metric Space

(c) \([A,S],[B,T]\) are compatible pairs of maps

(d) For all \(x, y \in X, k \in (0,1), t > 0\),

\[M(AX, BY, KT) \geq \min \{ M(Sx, Ty, t), M(AX, SX, t), M(BY, Ty, t), M(BY, SX, t), M(AX, TY, t), M(Ay, Tx, t) \} \]

For all \(x, y \in X\), \(n \rightarrow \infty\) \(M(x, y, t) \rightarrow 1\) then \(A, B, S, T\) have a common fixed point in \(X\).

Proof: Let \(x_0\) be an arbitrary point in \(X\). Construct a sequence \(\{y_n\}\) in \(X\) such that \(y_{2n} = Tx_{2n-1} = Ax_{2n-2}\) and \(y_{2n} = Sx_{2n-1} = Tx_{2n-1}\) for \(n = 0, 1, 2, \ldots\)

Put \(x = x_{2n}, y = x_{2n+1}\),

\[M(y_{2n+1}, y_{2n+2}, kt) = M(AX_{2n+1}Bx_{2n+1}, kt) \]

\[\geq \min \{ M(Sx_{2n}, Tx_{2n+1}, t), M(AX_{2n}Sx_{2n+1}, M(Bx_{2n+1}, Tx_{2n+1}, t), M(Tx_{2n}, Ax_{2n+1}, t), M(AX_{2n}, Tx_{2n+1}, t), M(Bx_{2n+1}, Sx_{2n+1}, t) \} \]

\[\geq \min \{ M(y_{2n+1}, y_{2n+2}, t), M(y_{2n+1}, y_{2n+2}, t), 1 \} \]

Which implies

\[M(y_{2n+1}, y_{2n+2}, t) \geq M(y_{2n+1}, y_{2n+2}, t) \]

In general

\[M(y_{2n+1}, y_{2n+2}, t) \geq M(y_{2n+1}, y_{2n+2}, t) \]

(1)

To prove that \(\{y_n\}\) is a Cauchy sequence we will prove (b) is true for all \(n \geq n_0\) and every \(m \in N\)

\[M(y_n, y_{n+m}, t) > 1 - \lambda \]

(2)

Here we use induction method

From (1) we have

\[M(y_{2n+1}, y_{2n+2}, t) \geq M(y_{2n+1}, y_{2n+2}, t) \geq \ldots \geq M(y_0, y_1, t/k^2) \rightarrow 1 \text{ as } n \rightarrow \infty \]

i.e for \(t > 0\), \(\lambda \in (0,1)\). We can choose \(n_0 \in N\), such that

\[M(y_{n_0}, y_{n_0+m}, t) > 1 - \lambda \]

(3)

Thus (2) is true for \(m = 1\). Suppose (2) is true for \(m = n\) then will show that it is true for \(m+1\). By the definition of fuzzy metric space, we have

\[M(y_{n+1}, y_{n+m+1}, t) \geq \min \{ M(y_{n+1}, y_n, t), M(y_{n+m}, y_{n+m+1}, t) \} > 1 - \lambda \]

Hence (2) is true for \(m+1\). Thus \(\{y_n\}\) is a Cauchy sequence. By completeness of \((X, M, *)\), \(\{y_n\}\) converges (3)

Using (3), we have \(M(SX_{2n}, SX_{2n}, t/2) \rightarrow 1\)

\[M(SX_{2n}, Sz_{2n}) \geq \min \{ M(SX_{2n}, SX_{2n}, t/2), M(SX_{2n}, Sz_{2n}, t/2) \} \]

Thus \(\{y_n\}\) is a Cauchy sequence. By completeness of \((X, M, *)\), \(\{y_n\}\) converges (3)

For all \(n \geq n_0\)

Hence \(ASX_{2n} \rightarrow Sz = TSX_{2n}\)

Similarly \(BTX_{2n-1} \rightarrow Tz = ATX_{2n-1}\)

Now put \(x = Sx_{2n}\) and \(y = Tx_{2n-1}\)

\[M(ASX_{2n}, BTX_{2n-1}, t) \geq \min \{ M(S^2x_{2n}, T^2x_{2n-1}, t), M(ASX_{2n}, S^2x_{2n}, t), M(BTX_{2n-1}, T^2x_{2n-1}, t), M(ASX_{2n}, ASX_{2n}, t), M(ASX_{2n}, ATX_{2n-1}, t) \} \]

Taking limit as \(n \rightarrow \infty\) and using (4) and (5)

We get \(M(Sz, Tz, kt) \geq M(Sz, Tz, t)\), which implies

\[Sz = Tz \]

(6)

Now put \(x = y\) and \(y = Tx_{2n-1}\)

\[M(AY, BTTY_{2n-1}, t) \geq \min \{ M(Sy_1, T^2x_{2n-1}, t), M(Ay, Sy_1, t), M(BTTY_{2n-1}, Sy_1, t), M(Ay, T^2x_{2n-1}, t), M(Ty, ATX_{2n-1}, t) \} \]

Taking the limit as \(n \rightarrow \infty\) and using (5) and (6) we get

\[Az = Tz \]

(7)

Now using (6) and (7)

\[M(Az, Bz, t) \geq \min \{ M(Sz, Tz, t), M(Az, Sz, t), M(Bz, Tz, t), M(Bz, Sz, t), M(Az, Tz, t), M(Az, Tz, t), M(Az, Tz, t), M(Az, Tz, t) \} \]

\[\geq M(Az, Bz, t) \]

Which implies \(Az = Bz\)

Using (6), (7) and (8)

We get

\[Az = Bz = Sz = Tz \]

Now

\[M(Ax_{2n}, Bz, kt) \geq \min \{ M(Sx_{2n}, Tz, t), M(Ax_{2n}, Sx_{2n}, t), (Bz, Tz, t), M(Bz, Sx_{2n}, t), M(Ax_{2n}, Tz, t), M(Tx_{2n}, Az, t) \} \]

Taking the limit as \(n \rightarrow \infty\) and using (9) we get

\[Z = Bz \]

Thus \(z\) is common fixed point of \(A, B, S, T\).

For uniqueness let \(w\) be another common fixed point then we have

www.ijres.org
Extension of Some Common Fixed Point Theorems using Compatible Mappings in Fuzzy Metric

\[M(Az, Bw, kt) \geq \min \{ M(Sz, Tw, t), M(Az, Sz, t), M(Bw, Tw, t), M(Bw, Sw, t), M(Az, Tw, t), M(Tz, Aw, t) \} \]

i.e. \[M(z, w, kt) \geq M(z, w, t) \]
hence \(z = w \) this completes the proof.

III. Conclusion

Here we proved the theorem using the notion of compatibility without exploiting the condition of \(t \)-norm.

References