
International Journal of Research in Engineering and Science (IJRES)

ISSN (Online): 2320-9364, ISSN (Print): 2320-9356

www.ijres.org Volume 2 Issue 5 ǁ May. 2014 ǁ PP.42-44

www.ijres.org 42 | Page

Secure Programming Language Cs

M.A. Malkov
Russian Research Center for Artificial Intelligence

Abstract: This is a preliminary communication on the computer language Cs, which provides the full security

of a computer. We call the security internal. The language inherits the syntax of language C++ but with the new

rules of declaration of arrays, with an extension of cycle operations, and without pointers, goto, and functions

like calloc-free (allocation-deallocation of memory). The language can provide external security (from cyber-

attacks), if its operation system changes the incoming programs in accordance with standards of Cs. And if its

Internet provider is special.

I. Introduction
 There are internal and external computer securities. The internal security protects data and programs if

programs created by a language are executed. The external security provides protection against spyware,

viruses, and the other cyber-attacks.

We offer the programming language Cs for the internal security. In particular, Cs provides protection

against wrong addresses and infinite loops.

The language can be used to provide the more deep internal security and the external security, too. For

that its operating system must permit only programs created by the language.

This means that the system is closed for programs not created by the language. So it is necessarily to

create all existing programs anew. This is a very difficult problem. But we can overcome this by compositing a

program which remakes existing programs in accordance with the standards of the language. This program must

be used by the operation system to change programs incoming from Internet.

All users of the language must use its operating system and a special processor. The processor provides

additional computer security and accelerates execution of programs. The motherboard is special too, since it

provides additional security. More detailed information about the processor and the motherboard is out of the

communication.

II. Syntax of language
The language inherits the syntax of programming language C++ [1] but pointers and functions like

calloc-free (allocation-deallocation of memory) are excluded and rules of declaration of data arrays are changed.

Some additional changes must be done, too.

The pointers are excluded since they give unrestricted access to any part of memory. But there are

implicit pointers, they are names of data and programs. These pointers are dereferenced at executions. If values

of a pointer are pointers, i.e. values of a name are names, then the pointer is dereferenced twice. The

programming language Ruby [2] does not contain explicit pointers, too.

 The functions of allocation-deallocation lead to random distribution of memory. They must be removed

too, since memory for data and programs is automatically allocated if a program begins a block and deallocated

if the program leaves the block, or is allocated-deallocated in accordance with the memory classes static, extern

or with modifier public, the modifier is used as additional memory class. This allows allocating continuous areas

of memory for data and programs. As a result, the control of security of data and programs becomes simpler.

The rules are changed for declarations of data arrays with variable length. The new rules of the

declarations demand to indicate not only maximal length of arrays but to indicate the variable containing current

length of the first component of arrays. This allows interrupting a program if an address is outside of an array,

i.e. this ensures the security of data and programs. Furthermore, arrays can be operated entirely without detailing

its structure.

It is enough to specify the length of the first component of arrays since, by rules of the language C++,

the length of the remaining components is fixed.

This is an example of declaring a data array: int m, M[1000,m] [2]={0,1}. The array is declared such

that the current value of the first component equals 1 (m=1), the current length of the array equals 1*2 bytes, the

maximal length is 1000*2 bytes. If one writes a new value of the array he must use m as the first component.

The operators goto, while, do-while are excluded, the operator for can replace while and do-while

operators. The operator for has the additional fourth field containing the maximal number of cycling. By default

the number equals 1 000 000. Hence infinite loops are excluded.

Secure programming language Cs

www.ijres.org 43 | Page

III. Compiler of language
 At mathematical point of view, each class of language C++ is an algebra since the class contains a set

(data) and operations on this set (programs). A project is an algebra too, and classes are, in fact, subalgebras of

the project. The compiler allocates each algebra a part of RAM. This part contains an instruction area and a data

area. The instruction area is inaccessible for changing by its instructions and takes a continuous part of memory.

The data area is available for changing and also occupies a continuous part of memory. All these will allow

controlling the security of instructions and data with minimal expense of time.

The compiler provides relative addresses of instructions and data. The address 0 of instructions is an

address of instruction area beginning, the address 0 of data is an address of data area beginning. Programs will

be interrupted if an address is out of data area or out of array area.

The compiler gives a relative address of memory. The operation system gives a real address of memory

and places data area direct after program area.

The compiler must identify program errors as much as possible. All existing algorithms must be used.

IV. Operational system
The operational system (OS) is constructed only by means of the language. OS is an algebra too, the

compiler allocates OS not only relative, but also a real memory. In this case, the compiler performs a simple

function of OS.

OS performs the basic functions of operational systems, in particular organizes execution of programs

in multitasking mode, allocates real memory for compiled program, works with external devices, provides a

library of utilities, and so on. OS does not interfere with inner workings of programs and not collect information

about the inner workings. But OS interrupts programs and then removes them if an address is wrong or by a user

request.

OS increases a data area on request of an algebra. If the increase is not possible OS performs garbage

collection by moving algebras in memory.

OS allocates memory for the algebra of the system designer. Only the site of the designer has access to

this algebra.

V. Site of designer
The designer is a very big collective of programmers since the designer must create immense volume

of soft. This site is a server for all users of the language system.

The site provides users of the system with new programs and with corrections of existing programs. All

programs are tested for safety and put into the library by a special program.

The site is an Internet provider. It provides users with unlimited Internet connection. The site performs

only protection against cyber-attacks such as DDOS. For that the site records all users of the security system and

their subscribes. The site blocks all unregistered subscribers during a cyber-attack. The blocking is partial since

a cyber-attack can be organized by using only subscribers of users of the security system. In this case, the site

does not block users (registered and unregistered) identified by a random selection.

VI. Other properties of language
The other properties are used to simplify programs. Then some properties of C++ become unnecessary

but they can be used by one if he likes them.

The operator if is unnecessary, it is replaced by the operation ?: . The second and third operands of the

operation can contain any operators, in particular the operator for. The third operand can be absent.

 The language C++ is functional. Every operator has a value, the value can be void. If a sequence of

operators is closed by parenthesis then a value of the sequence is a value of the last operator. But a sequence of

operators for functions has values for every operator. The property is used by every two-placed operation in Cs.

So there are a sequence of values for every two place operation ° : (X1,...,Xn) °(Y1,...,Yn)=(X1°Y1,...,Xn°Yn). But

there is only one value if a symbol ° stands before a sequence: °(Z1,...,Zn)=Z1°…°Zn. For example,

&&((X1,X2,X3)||(Y1,Y2,Y3)) =(X1||Y1)&&(X2||Y2)&&(X3||Y3).

 Dots are used to construct a sequence of values with some step. If the step equals 1 then one use the

construction a,…,b for the sequence a,a+1,…,b if b≤ a, and the sequence is empty if b>a. For example, int

m,n=1000,a[m,n]={b,…,c}; . If a step does not equal 1, then one use the construction a,b,…,c for the sequence

a,a+(b-a),a+2*(b-a),…,a+m*(b-a) where a+m*(b-a)≤c<a+(m+1)(b-a).

Labels in Cs have from 1 to 8 any symbols except : . The labels can be used as commentaries before

blocks or operators. Then they have no reference. But there are labels that have references. In addition to C++,

the labels can be used in the operators continue, break and switch. Then the operator switch is used like continue

if continue will be out of a cycle. For example, switch(a+b), break(?). And there are arrays of labels, they are

used by the same operators.

Secure programming language Cs

www.ijres.org 44 | Page

 In Cs definitions of data can be added by pointing out data length. For example, int 5bit X, 1000byte Y,

100 Z; float 1000.10 F;, here X has length of 5 bit, Y has length of 1000 bytes, Z has length of 100 decimal

digits, F has mantissa of 1000 decimal digits and exponent of 10 decimal digits, so 10
-10

<F<10
10

.

 New types are introduced only by using specifier typedef. In particular the definition: typedef struct X

\{int x; float f;\};, introduces the new type, the definition: struct X, Y {int x; float f;}; , does not introduce a

type.

 Definitions of classes are replaced by definitions of structures, components of the structures can be

programs. The definitions do not differ from definitions of classes.

The priorities (ranges) of operations &, | and ^ are changed. They have the same priority, which follows

after the priority of operations << and >>. For example, one can use the expression a | b>>c!=d instead of the

expression (a | b>>c) != d.

An arithmetic expression can not be Boolean. This allows the compiler to find more mistakes in

programs. So one must use the expression x==0 instead of !x.

Non-recursive functions are executed more simple and without any additional time of .their execution.

These functions can be used instead of inline functions without additional memory requested by inline functions.

The type char is used only as an array of characters without the symbol \0 in the end. The type cannot

be used as an array of integers of length 8. Instead the type int 1byte must be used. The new type string is used

as an array of characters with the symbol \0 in the end. The operation + is used to concatenate data of types

char and string.

If one inputs data he can point out to execute some operators without waiting end of the imputation.

The sequence of the operators must be ended by the operator wait; .

References
[1] B. Stroustrup, The C++ programming language, fourth edition, Addison-Wesley, 2013.

[2] David Thomas, Chad Fowler, Andrew Hunt, Programming Ruby: The Pragmatic Programmer’s Guide, second edition, Addison-

Wesley, 2004.

