
International Journal of Research in Engineering and Science (IJRES)

ISSN (Online): 2320-9364, ISSN (Print): 2320-9356

www.ijres.org Volume 2 Issue 5 ǁ May. 2014 ǁ PP.14-20

www.ijres.org 14 | Page

A High Speed Transposed Form FIR Filter Using Floating Point

Dadda Multiplier

Dhivya.V.M
1
, Sridevi.A

2

1
(ECE, SNS College of Technology/Anna University, Coimbatore, India)

2
(ECE, SNS College of Technology/Anna University, Coimbatore, India)

ABSTRACT: There is a huge demand in high speed area efficient parallel FIR filter using floating point

dadda algorithm, due to increase performance of processing units. Area and spped are usually confictiong

constraints so that improving speed results mostly in large areas. In our research we will try to determine the

best solution to this problem by comparing the results of different multipliers. Different sized of two algorithm

for high speed hardware multipliers were studied and implemented ie.dadda and booth multipliers. The working

of these two multipliers were studied and implementing each of them separately in VHDL. The results of this

research will help us to choose the better option between multipliers for floating point multiplier for fabricating

different system.

KEYWORDS - Booth multiplier, Dadda multiplier, FIR Filter, Floating point multiplier, VHDL

I. INTRODUCTION

FIR filters are one of two primary types of digital filters used in Digital signal Processing (DSP)

applications. Main approach is to implement high throughput FIR filter .multiplier block reduction has

attempted to minimize various cost functions such as number of adders and multipliers block area by sub

expression elimination. Attention has been paid to identify ways to reduce power consumption of high

throughput FIR implementation based on FPGA. Implementations based on FPGA hardware are better suited

because of the likely need for frequent modifications. To increase the effective throughput of original filter or to

reduce the power consumption of original filter parallel or block processing has been applied to digital FIR

filter. In many design situation the overhead hardware incurred by parallel processing cannot be tolerated due to

design area limitation. Therefore it is beneficial to realize parallel FIR filter structure that consumes less area

than the traditional one. Sub modules used will be Floating point multiplier and Error tolerant adder (ETA).

ETA includes sub modules i.e modified XOR gate and Ripple Carry Adder. Ripple Carry Adder is used because

it requires less hardware. ETA cause less power consumption due to the elimination of carry propagation to a

large extent.

1.1. Applications

FIR filters are used as a fundamental processing element in any DSP system. FIR filters are used in

DSP applications ranging from video and image processing to wireless communications[2]. In the application of

video processing, the FIR filter circuit must be able to operate at high frequencies, while in other applications,

such as cellular telephony, the FIR filter circuit must be a low-power circuit, capable of operating at moderate

frequencies.

1.2 FIR Filters

FIR Filters are the backbone of DSP system. FIR means ―Finite Impulse Response. If impulse is

input, that is, a signal 1 sampled followed by many 0 samples, zeroes will come out after the 1 sample has made

its way through the delay line of filter. The impulse response is finite because there is no feedback in the FIR.

However, if feedback is employed yet the impulse response is finite, the filter still is a FIR. Example is the

Moving Average Filter, in which the Nth prior sample is feed back then each time a new sample comes in. This

filter has a finite impulse response even though it uses feedback : after N samples of an impulse, the output will

always be zero. Alternative to FIR filters are ―Infinite Impulse Response‖ (IIR). IIR filters use feedback, so

when you input an impulse the output theoretically rings indefinitely. The advantages of FIR filters outweigh the

disadvantages, so they are used much more than IIRs.

1.3 Floating Point Multiplier

Multipliers are the major components of high performance systems used extensively in digital

electronics such as microprocessors, digital signal processors and FIR Filters etc. The performance of any

A High Speed Transposed Form FIR Filter Using Floating Point Dadda Multiplier

www.ijres.org 15 | Page

system is determined by the performance of multipliers because they are the slowest part in the system.

Moreover, they require greater area than other components. Therefore, optimizing the speed and area of the

multipliers is the foremost issue. As area and speed are both conflicting constraints this means that for greater

speed we need larger area. A number of algorithms are proposed and used to design multipliers and the actual

implementation is mostly some little refinements and variations of the few basic algorithms presented here. In

addition to choosing those algorithms for addition, subtraction, multiplication etc an architect must make other

decisions like how exceptions should be handled and what precisions should be implemented. We have designed

a type of multiplier floating point .Our discussion on floating point will focus almost exclusively on the IEEE

floating-point standard because of its rapidly increasing acceptance. Although floating point arithmetic involves

manipulating exponents and shifting fractions, the bulk of the time in floating point is spent operating on

fractions using integer algorithms. Thus, after our discussion of floating point we will take a more detailed look

at efficient algorithms and architectures. When two binary numbers, multiplicand “N” and multiplier “M” are

multiplied the algorithm utilizes distributive property of multiplication. The multiplication of M*N consists of

partial products which represents a single component of the total product . A binary multiplier can be

decomposed in to a sum of partial products. It can be done by selection of a partial product value, and some

shifting that is independent of the election value. Opting a group length for multiplication limit us to make a

trade-off between the number of partial products and the complexity of computing them.

II. SYSTEM MODEL

2.1 Booth Multiplier

Booth algorithm provides a procedure for multiplying binary integers in signed-2’s complement

representation [1]. According to the multiplication procedure, strings of 0’s in the multiplier require no addition

but just shifting and a string of 1’s in the multiplier from bit weight 2k to weight 2m can be treated as

2k+1 - 2m. Booth algorithm involves recoding the multiplier first. In the recoded format, each bit in the

multiplier can take any of the three values: 0, 1 and -1.Suppose we want to multiply a number by 01110 (in

decimal 14). This number can be considered as the difference between 10000 (in decimal 16) and 00010 (in

decimal 2). The multiplication by 01110 can be achieved by summing up the following products:

 24 times the multiplicand(24 = 16)

 2’s complement of 21 times the multiplicand (21 = 2).

In a standard multiplication, three additions are required due to the string of three 1’s.This can be replaced

by one addition and one subtraction. The above requirement is identified by recoding of the multiplier 01110

using the following rules summarized in table 1.

Table 1: Radix 2 recoding rules

Qn Qn+1 Recoded

bits

Operation

performed

0 0 0 Shift

0 1 +1 Add M

1 0 -1 Subtract M

1 1 0 Shift

 To generate recoded multiplier for radix-2, following steps are to be performed:

 Append the given multiplier with a zero to the LSB side

 Make group of two bits in the overlapped way

Recode the number using the above table. Consider an example which has the 8 bit multiplicand as 11011001

and multiplier as 011100010.

Multiplicand 1 1 0 1 1 0 0 1

Multiplier 0 1 1 1 0 0 0 10

Recoded multiplier +1 0 0 -10 0+1-1

 0 0 0 1 0 0 1 1 1

 1 1 1 0 1 1 0 0 1

 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0

 0 0 0 1 0 0 1 1 1

 0 0 0 0 0 0 0 0 0

 1 1 1 0 1 1 0 0 1

 Product 0000001001001001

A High Speed Transposed Form FIR Filter Using Floating Point Dadda Multiplier

www.ijres.org 16 | Page

III. PROPOSED FLOATING-POINT DADDA MULTIPLIER
3.1 IEEE Standard 754 Floating Point Numbers

Floating point describes a method of representing real numbers in a way that can support a wide range

of values. The base for scaling is normally 2, 10, 16. The representation is exactly have the form:

Significant digits × base ^ (exponent)

The term floating point refers to the fact that the radix point (decimal point or in computers, binary

point) can ―float‖; that is, it can be placed anywhere relative to the significant digits of the number. The

advantage of floating point representation over fixed-point and integer representation is that it can support a

much wide range of values eg. Fixed-point representation has seven decimal digits with two decimal places

can represent the number 34565.67, 145.12 , 1.45 and so on, whereas a floating point representation (such

as IEEE 754decimal 32 format) with seven decimal digits could in addition represent 1.324765, 234516.7,

0.00003455687, 4327651000000000, and so on. The floating-point format needs slightly more storage (in

order to encode the position of the radix point). So when stored in the same space, floating-point numbers

achieve their greater range at the expense of precision. The Fig. 2 shows the block diagram of floating point

multiplier. Initially the input values are unpacked into sign-bit, exponents and significands and applied to

the sub-modules. The sign of the multiplication result is obtained by EX-OR operation on the input sign-

bits. The exponents of the inputs are added and bias value is

Fig. 2. Block diagram of Floating-point Multiplier.

subtracted from the result (in order to make the final exponent result in biased format). This resultant

exponent is adjusted in the subsequent normalization steps and checked for overflow or underflow before

final exponent is obtained. The 24×24 significand multiplication is the main block in which redundant

computations take place frequently and is the main obstacle in achieving high-performance and low-power

consumption in the filter design. The redundant computations can be reduced by identifying common

computations and sharing them among filter taps. Since each alphabet is represented with 4-bits, for the

24×24 significand multiplication we need six select & shift units. We have implemented an IEEE-754

compliant Floating point dadda based on the proposed architecture. Also, we have implemented booth

multiplier for comparison purpose.

1) Result Sign: The result sign is obtained by XOR operation of the sign bits of the input operands.

2) Exponent Addition: We have used Carry-Look Ahead adders for the exponent addition and for the

subtraction of bias (valued 127) from the added result

.

IV. DADDA MULTIPLIER IMPLEMENTATION
The Dadda algorithm reduces the tree by reducing columns instead of rows. The goal of the algorithm

is to use the least amount of elements as possible. To accomplish this, the algorithm adds elements as late as

possible. In the dot diagram notation developed by Dadda each partial product is represented by a dot[7]. The

A High Speed Transposed Form FIR Filter Using Floating Point Dadda Multiplier

www.ijres.org 17 | Page

dot diagram for an 8 by 8 Dadda multiplier is shown in Fig. 3. The eight rows of eight dots each at the top of the

figure represent the partial product matrix formed by the AND gates.

Dadda multiplier use a minimal number of (3,2) and (2,2) counters at each level during the

compression to achieve the required reduction. The reduction procedure for Dadda compression trees is given

by the following recursive algorithm.

1. Let d1=2 and dj+1= [1.5* dj]. Dj is the height of the matrix for the j
th

stage. Repeat until the largest j
th

stage is reached in which the original N height matrix contains at least one column which has more

than dj dots.

2. In the j
th

 stage from the end, place (3,2) and (2,2) counters as required to achieve a reduced matrix.

Only columns with more than dj dots or which will have more than dj dots as they receive carries from

less significant (3,2) and (2,2) counters are reduced.

3. Let j=j-1 and repeat step 2 until a matrix with a height of two is generated. This should occur when j-1

Fig. 3 Dot diagram for 8 by 8 Dadda multiplier

V. FIR FILTER IMPLEMENTATION USING FLOATING POINT DADDA

MULTIPLIER

The N-tap FIR filter in Z domain is given in equation 1

 (1)

Traditional 4- parallel FIR filter Equations shown in equation 2[7]

A High Speed Transposed Form FIR Filter Using Floating Point Dadda Multiplier

www.ijres.org 18 | Page

 (2)

Requires 16 multiplications, 12 additions, 6 delay elements.[7]

Fig.5 shows the proposed structure of the parallel FIR filter using floating point dadda multiplier.

The proposed structure of the parallel FIR filter using floating point Dadda multiplier shown in fig. 5. Since

the precomputer lies on the critical path of the Floating point Dadda algorithm one pipeline stage is introduced

after the precomputation block. Because of this the latency of the proposed FIR filter increases by one clock

cycle. If conventional multipliers (Wallace multiplier, Booth-encoded multiplier etc.) are used for filter

implementation, flip-flops for pipelining should be placed in every tap of the filter. However, pipelining of the

filter using Floating point dadda algorithm can be simply done by placing flip-flops right after the

precomputation block, irrespective of the filter size, due to computation sharing and reuse. Therefore, the cost of

A High Speed Transposed Form FIR Filter Using Floating Point Dadda Multiplier

www.ijres.org 19 | Page

pipelining (the number of flip-flops) is much smaller than using conventional multipliers. IEEE-754 complaint

Floating-point adder is designed as explained in the previous section for the adder elements in the filter.

VI. RESULTS AND DISCUSSIONS
We have described the proposed floating-point Dadda multiplier architecture and floating-point booth

multiplier architecture using Verilog Hardware Description Language. To demonstrate the application of the

proposed floating-point Dadda algorithm, we have implemented the floating-point Dadda algorithm architecture

into a 10-tap programmable parallel FIR filter with transposed direct form. Also, to show the effectiveness of

the proposed floating-point Dadda algorithm scheme, a 10-tap FIR filter with programmable coefficients is

designed based floating-point booth multiplier implemented. Both the multiplier scheme and parallel FIR filter

structures using both floating-point Dadda multiplier and floating-point booth multiplier are modeled using

Verilog HDL and simulated using Xilinx . After functional validation, the structures are synthesized using RTL

Compiler. The results of the filter implemented based on floating-point Dadda algorithm and floating-point

booth multipliers are tabulated in Table I.

TABLE I. COMPARISON RESULTS

Components FIR Filter-Floating Point

Dadda Multiplier

FIR-Filter Floating Point

Booth Multiplier

Delay Clock(ns) 44 47

Power

Switching

power(mw)

41.77 69.46

Net

power(mw)

26.92 37.36

Internal

power(nw)

14.85 32.09

Leakage

power(nw)

21.12 22.69

Total

power(mw)

83.75 138.93

Power-Delay product(PDP) 3685.05 6529.84

Area No.of Cells 46521 36703

Cell

Area(μm
2
)

475442 464179

Parallel FIR filter based floating-point dadda algorithm structure achieves 39.7% savings in Power and

an improvement of 6.38% in terms of speed and 43.56% savings in terms of PDP (Power Delay product)

compared to the parallel FIR filter based on floating-point booth multiplier with 2.43% area overhead. This is

achieved by computation sharing which reduces the computational redundancy in the filtering operation.

VII. CONCLUSION
We have implemented parallel FIR filter based on floating-point dadda algorithm and booth Multiplier.

In floating-point dadda algorithm scheme, the precomputed values are shared among the multipliers in the filter.

Since redundant computations are removed in the 24×24 significand multiplication, the floating-point dadda

algorithm technique results in Low-power and high-performance compared to booth multiplier. The proposed

parallel FIR filter based on floating-point dadda algorithm architecture can be used in the design of adaptive

filter and signal equalizers.

References

[1] B. Jeevan, S. Narender, Dr C.V. Krishna Reddy and Dr K. Sivani “A High Speed Binary Floating Point Multiplier Using Dadda

Algorithm,” IEEE Transaction on VLSI 978-1-4673-5090-7/13/$31.00 ©2013 IEEE.

A High Speed Transposed Form FIR Filter Using Floating Point Dadda Multiplier

www.ijres.org 20 | Page

[2] Sivanantham .S, Jagannadha Naidu. K, Bala murugan. S & Bhuvana Phaneendra .D “Low Power Floating Point Computation Sharing

Multiplier for Signal Processing Applications” International Journal of Engineering and Technology (IJET). vol. 5, no. 2,pp 975-985

Apr-May 2013.

[3] Muhammad K & Roy K, “Reduced computational redundancy implementation of DSP algorithms using computation sharing vector

scaling,” IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol.10, no.3, pp.292-300, June 2002

[4] Jongsun Park, Muhammad K & Roy K, “High-performance FIR filter design based on sharing multiplication,” IEEE Trans. Very

Large Scale Integration (VLSI) Systems, vol.11, no.2, pp.244-253, April 2003.

[5] Carl Hamacher, Zvonko Vranesic & Safwat Zaky, “Computer Organization,” Mc Graw Hill, Intl. Edition, 2002.

[6] R. I. Hartley, “Sub expression sharing in filters using canonic signed digit multipliers,” IEEE Trans. Circuits Syst. II, vol. 43, pp.677–

688, Oct.1996.

[7] M. Potkonjak, M. Srivastava & A. P. Chandrakasan, “Multiple constant multiplications: Efficient and versatile framework and

algorithms for exploring common subexpression elimination,” IEEE Trans. Computer-Aided Design, vol. 15, pp. 151–165, Feb. 1996.

[8] N. Sankarayya, K. Roy & D. Bhattacharya, “Algorithms for low power high speed FIR filter realization using differential

coefficients,” IEEE Trans. Circuits Syst. II, vol. 44, pp. 488–497, June 1997.

[9] K. Muhammad & K. Roy, “A graph theoretic approach for synthesizing very low-complexity high-speed digital filters,” IEEE Trans.

Computer-Aided Design, vol. 21, pp. 204–216, Feb. 2002.

[10] Jongsun Park, Woopyo Jeong, Mahmoodi-Meimand H, Yongtao Wang, Choo H & Roy K, “Computation sharing programmable FIR

filter for low-power and high-performance applications,” IEEE Journal of Solid-State Circuits, vol.39, no.2, pp. 348- 357, Feb. 2004.

[11] Praveen Kumar M V, Sivanantham S, Balamurugan S & Mallick P.S, “Low power reconfigurable multiplier with reordering of partial

products,” Proc International conference on Signal Processing, Communication, Computing and Networking Technologies (ICSCCN),

2011, vol., no., pp.532-536, 21-22 July 2011.

[12] Balamurugan, S., Sneha Ghosh, S. Balakumaran, R. Marimuthu, and P. S. Mallick. "Design of low power fixed-width multiplier with

row bypassing." IEICE Electronics Express 9, no. 20 (2012): 1568-1575.

[13] Sivanantham,S., Padmavathy, M., Divyanga, S. & Anitha Lincy, P. V. 2013 "System-On-a-Chip Test Data Compression and

Decompression with Reconfigurable Serial Multiplier", International Journal of Engineering and Technology, vol. 5, no. 2, pp. 973-

978.

[14] Hunsoo Choo, K Muhammad & K Roy, “Two’s Complement Computation Sharing Multiplier and Its Applications to High

Performance DFE,” IEEE Trans. on Signal processing, Vol.51, No.2, Feb’03.

[15] Mohamed Al-Ashrfy, Ashraf Salem and Wagdy Anis “An Efficient implementation of Floating Point Multiplier” IEEE Transaction on

VLSI 978-1-4577-0069-9/11@2011 IEEE, Mentor Graphics.

[16] B. Fagin and C. Renard, “Field Programmable Gate Arrays and Floating Point Arithmetic,” IEEE Transactions on VLSI, vol. 2, no. 3,

pp. 365-367, 1994.

[17] N. Shirazi, A. Walters, and P. Athanas, “Quantitative Analysis of Floating Point Arithmetic on FPGA Based Custom Computing

Machines,” Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines (FCCM’95), pp.155-162, 0-8186-7086-

X/9$50 4.00 0 1995 IEEE.

[18] L. Louca, T. A. Cook, and W. H. Johnson, “Implementation of IEEE Single Precision Floating Point Addition and Multiplication on

FPGAs,” Proceedings of 83 the IEEE Symposium on FPGAs for Custom Computing Machines (FCCM’96), pp. 107-116, 1996.

[19] Jaenicke and W. Luk, "Parameterized Floating-Point Arithmetic on FPGAs", Proc. of IEEE ICASSP, 2001, vol. 2, pp.897-900.

[20] Whytney J. Townsend, Earl E. Swartz, “A Comparison of Dadda and Wallace multiplier delays”. Computer Engineering Research

Center, The University of Texas.

[21] Xilinx13.4, Synthesis and Simulation Design Guide”, UG626 (v13.4) January 19, 2012.

