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ABSTRACT: This paper is devoted to processing data given in an ordinal scale. A new objective function of a 

special type is introduced. A group of robust fuzzy clustering algorithms based on the similarity measure is 

introduced.  
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I. INTRODUCTION  
The clustering task of multidimensional observations is an essential part of data mining, wherein it’s 

assumed in its traditional formulation that each sample feature vector can belong to only one cluster. It’s a more 

common case when a processed feature vector can belong to some classes at the same time with different 

membership levels. This situation is considered in fuzzy cluster analysis [1-3] which is widely used nowadays in 

many real-world applications which have to do with medicine, biology, economy, sociology, education, video 

processing etc. 

The initial information to solve a standard fuzzy clustering task is a data sample which consists of N  

n  dimensional feature vectors          1 , 2 , , , ,X x x x k x N      ,nx k R  k  is an observation number 

at the “object-property” table. The clustering result is the partition of  X  into m  overlapping classes with some 

membership levels  qw k  of the k  th feature vector  x k  to the q th cluster. It’s recommended to 

transform all the feature components of the initial data while processed in such a way that they belong to some 

hypercube, for example    0,1
n

x k  . In this way, the initial data takes the form of 

        1 , , , , ,
T

i nx k x k x k x k     0 1,ix k   1 ,m N   1 ,q m   1 ,i n   1 .k N    

The situation is much more complicated when the initial data are set in an ordinal scale, i.е. a sequence 

of ordered linguistic variables like  
1 2, , , , , ,imj

i i i ix x x x   1 1 1 ,ij j j m          

where j

ix  is a linguistic variable which corresponds to the i  th feature, j  stands for a corresponding rank, 
im  

is a number of such ranks for the i  th feature. Wherein a rank number for each feature might be different, for 

example, there are two gradations in the case of 1i  : «bad – good», there are three gradations in the case of 

2i  : «bad – satisfactorily – good», there are five gradations in the case of 3i  : «very bad – bad – 

satisfactorily – good – excellent» etc. It’s clear that usually .im N  It should be noticed that people are much 

more likely to use an ordinal scale, rather than a numeric one.  

The simplest way is to substitute ordinal values with their ranks though the loss of essential 

information is unavoidable because distances between the ranks are permanent and when dealing with linguistic 

variables it’s rather hard to talk about a distance in general. 

In this case, it seems more appropriate to preliminary map the initial linguistic variables into a 

numerical scale with the help of some transformations (fuzzy, frequency etc.) [4-6] with a minimal loss of 

information and to solve the fuzzy clustering task of numerical data. 

It should be noticed that a feature of ordinal values is that values at the edges of the scale can occur less 

frequently (especially when 
im  is rather big) than values which correspond to «average ranks». As a result the 

«edge» observations can be considered more likely as outliers than normal values. It’s appropriate to use robust 

fuzzy clustering algorithms in this case [7-12] which are based on objective functions (metrics) of a special type 

which can suppress those outliers. Though it has been mentioned earlier that using a term “distance” for 

linguistic variables is rather unconvincing, therefore it’s much more convenient to use a notion of "similarity" 

which satisfies "softer" requirements than a metric does. 

In this way, a purpose of the current paper is robust fuzzy clustering methods’ synthesis to process 

multidimensional data which are described with feature vectors and their components are ordered linguistic 

variables based on similarity functions of a special type which can suppress undesirable outliers. The initial 
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information to solve the task is a sample         1 , 2 , , , ,X x x x k x N    where      ,j

ix k x k  

1,2, , ;i n   1,2, , ij m   is a rank of a specific value of an ordinal variable in the i  th coordinate for the 

k  th sample object. The solution is the original sample partition of X  into m  intersecting classes  1 m N   

and membership levels’  qw k  calculation of the k  th feature vector to the q th cluster, 1 q m  .  

 

II. ORDINAL VARIABLES’ MAPPING INTO A NUMERICAL SCALE  

A linguistic variable  j

ix k  mapping into a numerical scale can be implemented in the simplest case 

with the help of the relative frequencies occurrence analysis of the j  th rank at the i  th feature [13]. If a 

sample contains N  observations and the j  th rank is met j

iN  times then relative frequencies can be 

calculated easily 
j

j i

i

N
f

N
  

and then cumulative frequencies are used as linguistic values’ estimates 
1

1

1

, , 1,2, , ,
j

j li
i i i i

l

N
F F f j m

N


     

which means that numerical analogues can be introduced instead of  the linguistic values  j

ix k   

    .j j

i i ix k x k F   

 It is clear that the condition  0 1ix k   is naturally fulfilled. 

Basically, the relative frequencies can be used as such estimates, i.е.     ,j j

i i ix k x k f   wherein 

rarely occurring values  j

ix k  can be considered  as outliers.  

 

III. ROBUST FUZZY DATA CLUSTERING BASED ON A SIMILARITY MEASURE  
It has been mentioned before that to solve a fuzzy data clustering task which contains outliers one can 

use objective functions of a special type. And the task solution has to do with these functions’ minimization. It 

would be much more convenient to use the so-called “similarity measures” (SM) [14] instead of objective 

functions from a content point of view. The conditions which are used to these similarity measures are softer 

than those for the metrics: 

    

         

         

, 0,

, , ,

, 1 ,

S x k x p

S x k x p S x p x k

S x k x k S x k x p

 





 

 

   

   

 

(the triangle inequality is absent), and the clustering task can be considered as the maximization of these 

measures. 

Fig.1 illustrates the usage of a traditional Gaussian function as a similarity measure with different 

width parameters 2 1.   

 
Fig.1. A traditional Gaussian function as a similarity measure 
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Selecting the width parameter 2  of the function  

  
    

2 2

2 2

,

2 2,

qq D c x kx k c

qS c x k e e 


 

 



                                                                                                                     (1) 

(here ( 1)qc n   is a coordinates’ vector of the q th cluster prototype), one could suppress the influence of 

widely separated observations from the prototype, that’s basically impossible to fulfill with the help of  the 

traditional Euclidean metrics  

    
2

2 , .q qD c x k x k c    

 Taking into consideration the objective function based on the similarity measure (1) 

         
 

2

22

1 1 1 1

, ,

qx k c
N m N m

s q q q q q

k q k q

E w k c w k S c x k w k e  




   

  


  

(here 0   is a fuzzifier which is used in the fuzzy clustering theory [2, 3]), standard probabilistic constraints   

 
1

1,
m

q

q

w k


  

the Lagrange function  

      
 

   

2

22

1 1 1 1

, , 1

qx k c
N m N m

S q q q q

k q k q

L w k c k w k e k w k  




   

 
   

 
  



       

                                                      (2) 

(here  k  is an undetermined Lagrange multiplier) and solving the Karush-Kuhn-Tucker system of equations, 

we get the solution 

 
  

  

    

      
 

 
2

2

1

1

1

1

1

1
1

1

1

2
2

1

,
,

,

, ,

, , 0.

q

q

q

q m

l

l

m

l

l

x k c
N

q

c S q q q

k

S c x k
w k

S c x k

k S c x k

x k c
L w k c k w k e









 

 





























 
   

 



   



















                                                                           (3) 

The last equation of (3) doesn’t have any analytical solution, that’s why one should use the Arrow-

Hurwicz-Uzava procedure to find a saddle point of the Lagrangian function (2). We obtain the algorithm after 

using this procedure 

 
    

    

          

     
   

   
2

2

1

1

1

1

1

1

2
2

, 1
1 ,

, 1

1 1 1 ,

1
1 1

q

q

q

q m

l

l

q q c S q q

x k c k

q

q q

S c k x k
w k

S c k x k

c k c k k L w k c k

x k c k
c k k w k e





 












 





 
 



      

  
    














 

where  1k   is a learning rate parameter. 

Putting the fuzzifier value 2  , we get to a robust fuzzy c-means modification (FCM [1]) based on 

the similarity measure: 
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 
    

    

       
   

   
2

2

1

1

2 2
2

, 1
1 ,

, 1

1
1 1 1 .

q

q

q m

l

l

x k c k

q

q q q

S c k x k
w k

S c k x k

x k c k
c k c k k w k e 





 


 
  
 



 
     













 

 Using then the accelerated machine time concept, one could introduce a robust adaptive fuzzy 

clustering procedure like 

   

      

      
       

              
     

     
2

2

1

1

1

1

1

1

0

1 1

1 2
2

,
1 ,

,

1 ,

1 1
1 1 1

q

q

q
m

l

l

Q

q q

x k c k

qQ

q q q

S c k x k
w k

S c k x k

c k c k

x k c k
c k c k k w k e



 








  










  







 





 

   
      















 

where 0,1, ,Q    is the accelerated machine time. This time is so that Q  machine time iterations are 

accomplished when two neighboring observations  x k  and  1x k   are fed. 

A decision on membership of each  x k  to a specific cluster qc  is made according to the similarity 

measure maximum value. 

A robust probabilistic [15] fuzzy clustering algorithm can be performed in the same manner based on 

the criterion  

          
1 1 1

, , , 1
N m m

s q q q q q q q

k q q

E w k c w k S c x k w k
 

  

   

                                                   

                  (4) 

where a parameter 0q   determines the distance where a membership level takes a value of 0,5, which means 

that  

 
2

,q qx k c    

then  

  0,5.qw k   

Solving the maximization task (4), we can get 

 
    

 

       
   

   

 
      

 

2

2

1
1

1

2
2

1
1

1

1

1

, 1
1 1 ,

1
1 1 1 ,

1 ,

1 ,

q

q

q

q

x k c k

q

q q q

k

q q

p

q k

q

p

S c k x k
w k

k

x k c k
c k c k k w k e

w p S c k x p

k

w p

 















 












   
     
   

  


 
     





  
















 

when 2 :   
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 
    

 

       
   

   

 
      

 

2

2

1

1

2 2
2

1
2 1

1

1
2

1

1
1 ,

, 1
1

1
1 1 1 ,

1 ,

1 .

q

q

q

q

x k c k

q

q q q

k

q q

p

q k

q

p

w k
S c k x k

k

x k c k
c k c k k w k e

w p S c k x p

k

w p












 












 







 
     





  
















 

And finally introducing the accelerated time we get the procedure  

   
      
   

1

1

11

1
,

,
1

q

q

q

w k

S c k x k

k



 










 
 
 
 


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qQ

q q q
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p
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


  


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









  




 










  



  
     




 


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








 

 

IV. CONCLUSION  
The group of robust fuzzy clustering algorithms based on the similarity measure is introduced. These 

algorithms are designated for multivariate observations’ processing. The observations are given in an ordinal 

scale. This approach is based on the linguistic variables’ mapping into a numerical scale and the modification of 

the well-known fuzzy c-means method which suppresses outliers. The proposed algorithms can be implemented  

easily. In fact, these algorithms are gradient optimization procedures of a special type objective functions. 
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